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I. ABSTRACT

This is an interim report describing the work accomplished in Phase I

and submitted in partial fulfillment of NAS 9-4605 Contract, "A Study

to Determine an Improved Method for Apollo Propulsion System Decon-

tamination."

The work in this phase included studies of (i) compatibility of solvent

with propellant and components, (2) methods of decontamination,

(3) efficiencies of solvents, (4) temperature effect, (5) diffusion

rate of propellant from elastomers, (6) removal of propellant from

flushing solvents and (7) a survey of the published literature,

proprietary information, and private correspondence on the technology

of decontamination of rocket propulsion systems.

All experimental work in Phase I was done in laboratory bench-scale

apparatus.
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III. APPROACH

Our approach involves three main areas of development effort -- the

study of methods utilizing solvents known to be compatible with the

contaminants, an evaluation of potentially unique solvents, and a

study of unique methods of decontamination.

The development of methods includes a comparison of the decon-

taminating efficiencies of various solvents of known compati-

bility as well as optimization of the process by a study of

such physical variables as time sequence, temperature, solvent

mixtures, and batch versus continuous flow. An evaluation of

methods of continuous solvent regeneration is also included.

Solvent development work consists of the selection, evaluation,

and screening of candidate solvents for suitability by detona-

tion testing and measurement of compatibility with system
materials.

Methods research work is aimed at devising unique approaches

to the problem. This includes a comparison of gaseous and

vapor-phase procedures with the more conventional liquid
solvent methods.

These development efforts are supported by functional units supplying

the required analytical development, design engineering, and process
evaluation.

A review of present technology and methods through literature and

technical documents is of major importance to this study program.

The interrelation of these efforts is shown diagrammatically in

Figure II-i.
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IV. SiGNqFiCAN_ RESULTS

A. The results of the detonation tests show fourteen solvents

or solvent mixtures were compatible with N204. No explosions

occurred when the solvents were added to N204 and the mixture
shocked with a blasting cap. The compatible solvents are

listed below:

i. Bromodichloromethane

2. Tribromofluoromethane

3. Freon MT

4. Freon_TF

5. Freon _ E-2

6. Freon _ 112

7. Freon (_: C-318

8. l,l-Dibromo-2,2,2-trifluoroethane

9. Dibromodifluoromethane

I0. Freon _ 112 and Bromochloromethane mixture (i:i)

II. Carbon tetrachloride

12. Chloroform

13. 2,2-Dichloro-l,l,l-trifluoroethane

14. Perfluorodimethylcyclobutane

B. The detonation tests with Aerozine-50 and the candidate solvents

were inconclusive since there was no discernable difference in

the order of magnitude of the explosion with or without the

solvent.

C. Correlating the results of some thermodynamic calculations with

the knowledge of compatibility gained from the detonation tests,

the following generalizations appear valid.

i. Solvent-N204 systems having a free energy change, _ F value

less than 2 Kcal/gram N204 do not detonate regardless of

the size of the triggering charge. These solvents are com-

patible with N204.

2. Solvent-N204 systems showing a _F value greater than 2 Kcal/

gram N204 can be detonated given sufficient shock. These

solvents are not compatible with N204.

IV-I



D°

E°

The results of the compatibility study of elastomers with

I. Teflo_ TFE and FEP are compatible with the propellant

and all solvents.

KeI-F No. 300 was not compatible with the propellant.

Failure occurred within one week in the N20 4 test and
within three weeks in the Aerozine-50 test.

3. Kynar was found to be compatible with propellant and

solvents.

Stillman SR634-70 rubber was not compatible with

Aerozine-50. Failure occurred within five weeks.

By comparison, B. F. Goodrich IIR-50 butyl rubber

showed a gain in tensile strength.

5. Rulon was found to be compatible with propellant and
solvents.

6. Freo_ E-2, a perfluoroether compound, was compatible

with the fuel and oxidant and the elastomers in both

systems.

Decontamination by fill-empty flushing was compared with

continuous flushing. The results show that:

I. The fill-empty flushing is more efficient for a given

volume of solvent.

The time required to reach the same contaminant concen-

tration level is about equal for both flushing methods.

No evidence was obtained that indicates either the fuel or

oxidant was chemically adsorbed on the surface of the metal.

The elastomers absorb substantial quantities of the propellants.

Experimental results show that the amount of contaminant diffused

from the elastomer per unit of time is proportional to the amount

present at that time; therefore, the rate the contaminant diffuses

from the elastomer can be expressed mathematically by this equa-
tion:

K

2.303 cI

t2_t I log c-_

where: cI = the initial concentration of contaminant

c2 = the final concentration

tI = the initial time

t2 = the final time

IV-2



H.

I.

J.

The constant (K) is the specific rate constant or velocity
constant for a first order reaction.

I. The specific rate constant (K) for the diffusion of N204
from Teflo_FEP at ambient temperature shows values of

1.4 x 10 -3 , I_5 x 10 -3 , and 1.8 x 10 -3 in environments

of GN2, Freo_ TF, and CCI 4. These nearly identical

values show the diffusion rate to be essentially inde-
pendent of environment.

.

.

The diffusion of A-50 from Stillman rubber at ambient

conditions in environments of GN 2 and methanol shows a
(K) value of 3.06 x 10-4 for both environments.

The results of N204 diffusion from Teflo_FEP tests

made at 25 ° , 65 °, and I00 ° C using GN 2 purge show (K)
values of 1.4 x 10 -3 , 3.4 x 10 -3 , and I.I x 10 -2 . This

implies that the diffusion rate is temperature dependent.

Plotting these points on semilog paper shows a resonable

fit; therefore, the diffusion rate increases exponentially

as the temperature is increased.

The results of tests indicate that the flushing solvents can

tolerate several hundred parts per million of the contaminant

and still effectively extract the contaminant from the elastomer.

Aerozine-50 is efficiently removed from methanol and Freo_ll3
by cation exchange resin (Dowex_Y50W-XS, 50-100 mesh, H+).

Silica gel, water-swollen and containing dissolved sodium

hydroxide, is a satisfactory method for removing N204 from
the flushing solvent.

IV-3



V. RECOMMENDATIONS

A, Vapor-phase flushing is the recommended procedure for decon-

tamination since it has .....=_,,eraI advantages over 1-1qu_.p_Lase_

flushing. The advantages are:

i, The latent heat of vaporization as well as the sensible

heat of the solvent will be available to supply heat to

the system.

2. The solvent vapors should give better penetration into all

areas than liquid-fill procedures.

_° The condensation of the vapors on the surfaces continuously
bathes these surfaces with clean solvent which removes the

contaminant and solid particles.

, The amount of solvent required for vapor-phase flushing

compared to liquid-phase flushing is reduced by a factor

of i00 to I000, depending upon the particular flushing

solvent used.

B. The solvents shown below are recommended for evaluation in

Phase II. The higher boiling solvents are preferred.

Oxidant Fuel

I. Freon_MF I. Methanol

2. Freon_TF 2. Ethanol

3. Carbon tetrachloride 3. N-Propanol

4. Bromodichloromethane 4, Isopropanol

5. Freon_E-2 5. Freo_E-2

Freon_E-2 was the only solvent found that was compatible with

both propellant components and elastomers in both systems.

C° Extraction of the N204 with sodium hydroxide-treated silica gel

is the recomended method for removing N204 from the flushing
solvent.

D. The recommended procedure for removing Aerozine-_0 from the

flushing fluid with cation exchange resin (Dowe_ 50W-XS,

50-100 Mesh H+).
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VI. UNIT I - METHODS DEVELOPMENT

A. Sun_nary

From the data obtained in this study the following conclusions
can be made:

I. Comparison between a fill and empty procedure and a

continuous flow or recycle method

If the total volume of solvent required to reach a given

contamination level is considered, the fill and empty

procedure is the more efficient. If the total time re-

quired to reach a given contamination level is considered,

the efficiencies of the two procedures are about equal,

on the systems used in this phase of the project. Since

the relative efficiencies are dependent upon the geometry

of this system, this should be determined for the Apollo

propulsion systems.

2. Choice of solvents for N204 decontamination

Solvents that passed the N204 explosion test are included

in Table i-I. All solvents tested showed essentially the

same efficienci_s in removing N204 from metal surfaces
and from Teflor_soft parts. Mixtures of solvents showed

no significant advantages.

Removal of N204 from soft parts is a major problem area.

Increa6ed soak times increased the removal of N204 from
Teflon .

Elevated temperature increased the efficiency of the

solvents in removing N204 from Teflor_Ysoft parts.

3. Choice of solvents for fuel decontamination

Detonation tests indicate that if the fuel or a fuel-solvent

mixture is detonated by a charge in the vapor, there is no

explosion. If the fuel or fuel-solvent mixtures are sub-

jected to detonation by a charge in the liquid phase, a low

order explosion results. See Table i-II for a list of

solvent detonation tests.

Alcohols show better results than hydrocarbons or halogenated

hydrocarbons in removing the fuel mixture from the test

cylinders.

Removal of the fuel from the soft parts is difficult to obtain.

Elevated temperatures increases the efficiency of the solvent

in removing the fuel from the soft parts.
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The work in this unit was involved in screening candidate
solvents based upon tests for compatibility with the propellant
(specifically solvent-propellant detonation tests), also,
developing and evaluating methods utilizing solvents of known
compatibility with the propellant and the materials of
construction.

B. Detonation Test Procedure

The indiscriminate mixing of solvents with the propellants,

especially N204, is likely to result in an explosive mixture.
As a first precaution in the screening of solvents, a testing

program was initiated which involved mixing various solvents

with N204 on Aerozine-50 and shocking or igniting the mixture

with a blasting cap to determine if the mixture is explosive.
These tests were carried out in an isolated area.

The procedure and equipment used were as follows:

Ignition Source - E-83 electric blasting cap

Sample Holder - 32-ounce paper Dixie cup

Volume of nitrogen tetroxide - same volume as test solvent

Volume of test solvent - as shown in Table I-I

A paper Dixie cup containing the indicated volume of test

solvent was placed on the sand. An equal volume of nitrogen

tetroxide was poured remotely into the test solvent. An E-83

electric blasting cap was then detonated, by means of a six-

volt battery, in the liquid mixture. The procedure used for

the A-50 detonation tests was essentially the same as given

above except the initial tests were carried out in vapor phase,

and I00 ml of A-50 and solvent were used in all tests. Test

results show that placing the blasting cap in the liquid gave

a more sensitive and reproducible test. Therefore, the latter

A-50 detonation tests and all of the N204 tests were carried

out with the blasting cap in the liquid. The detonation tests

were empirical and the explosibility was estimated by concussion,

audible, end visual observations. Usually, a crater of some

dimension was made in the sand after the tests in which an

explosion occurred. The size of the crater was proportional

to the charge and intensity of the explosion.

C. Propellant-Solvent Detonation Tests

The results of the solvent-N204 detonation tests are given in
Table i-I. The tests were carried out in triplicate and shown

only once unless there was a discrepancy in the results.

Dibromochloromethane gave inconsistent results, and analysis

of the sample by vapor phase chromatography revealed nothing

that would account for this discrepancy. Trichloroethylene,

which was known to be not compatible with N204, was included
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in the tests to serve as a control since a high order
explosion occurred whendetonated with N204. A few low-
boiling solvents such as Freor_ C-318, (CF2)4, and dibromo-
difluoromethane were included, but it was necessary to pack
the cup in dry ice to prevent evaporation.

The results of the A-50-solvent detonation tests are shown
in Table I-II. The initial tests were carried out in the
vapors above the solution. This resulted in burning the
materials, and no explosion occurred. Placing the detonator
(blasting cap) in the A-50 solution, with no solvent present,
resulted in a low order explosion. Whena solvent was added
and the test was carried out in the samemanner, a low order
explosion again occurred. There was no discernible differ-
ence in the order of magnitude of the explosion with or
without the solvent; therefore, the A-50 detonation tests
were discontinued.

D. Evaluation of Methods for N204 Decontamination

The apparatus shown in Figures I-I, 1-2, 1-3, and 1-4 was used

to evaluate the N204 decontamination methods. Figure i-I shows

the first system, and it was used to evaluate a continuous

flushing method. The tests were carried out in the following

manner: The test vessel was contaminated with approximately

one milliliter of N204. A measured volume of solvent from the
reservoir was then introduced into the vessel. The solvent

was allowed to remain in the test ch_nber for a given period

of time. Then the solvent in the test chamber was displaced

with clean solvent from the reservoir. This procedure was

repeated several times, and the N204 concentration in each

cycle was determined. The results were erratic, probably due

to poor mixing. The final flush was withdrawn from the bottom,

and it consistently contained more N204 than did the displaced
solvent.

The system was revised, and the modified apparatus is shown

in Figure 1-2. The revised system permitted the fill-elrpty

method as well as the continuous flushing method to be

evaluated. The procedures used to evaluate the continuous

flushing method was the same as described above. The over-

flow drainpipe was lowered to allow the solvent to drain from

the test chamber in the fill-empty method.

The apparatus shown in Figure 1-3 is a refinement of the two

previous systems. As shown in the above figure, a second

test vessel was added to the system which made it possible

to study the decontamination of elastomers that had been

preexposed to contaminants. Also, provisions were made for

sampling the exit gas.
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A numberof runs were made, using three different solvents,
to establish a comparison between a fill and empty procedure
and a continuous flow or recycle method. The equipment
illustrated in Figure 1-2 was utilized in this work. The
contaminant used was nitrogen tetroxide. The results obtained
for each of the three solvents were essentially the same. The
data obtained clearly indicate that, if we consider the total
volume of solvent required to reach a given contamination
level, the fill and empty procedure is the more efficient.
This is illustrated by three solvents in Figure 1-5. The
linear relationship between the volume of solvent and the
log of the effluent concentration in the continuous flow
method should be noted. In a situation where the solvent
can be repurified and reused on site, the efficiency as
measuredby total volume passed through the system might
not be of prime significance. Therefore, calculations were
made to gain some insight into the comparative efficiencies
of the two procedures in regard to total elapsed time. It
was assumedthat a reasonable flow rate into and through the
propulsion system is 70 gpmand that a fill-soak-empty cycle
for the batch procedure would require ninety minutes. Under
these conditions, the efficiencies of the two procedures are
about equal. Since this study proposes a system utilizing
regeneration and recycle of the solvent, the elapsed time
will probably be of more significance than the amount of
solvent passed through the system. Remaining bench-scale
work in Phase I was confined to the fill and empty method
since it is less dependent upon the over-all geometry of the
system.

E. Evaluation of Solvents for N204 Decontamination

Efforts were made to distinguish between the cleaning effi-

ciencies of various solvents. The apparatus shown in

Figure 1-2 (without the Ti-AI filings) was used to carry out

the tests. The fill-empty method using three flushes reduced

the N204 concentration in the third flush below five parts

per million for all solvents. The s_Ivents used were carbon
tetrachloride, chloroform, and Freo_ _ TF. The results are

shown by the curves in Figure 1-5. The slopes of the curves

in this figure indicate no apparent difference in the cleaning

efficiency of the solvents. To complicate the system, the

test chamber was filled about two-thirds full of Ti-AI filings

along with some stainless steel wire cloth as illustrated in

Figure i-2. The results are shown by the curves in Figure 1-6.

Again, no apparent difference was detected.

A two-chamber system, Figure 1-3, was constructed with one

chamber available for the addition of soft parts. The soft

parts consist of 14 inches of Teflo_TFE tubing with a surface

area of 106 square centimeters. This tubing was soaked over-

night in N204 and then placed in one of the chambers. One
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milliliter of liquid N204 was added to the other chamber.

Inspection of the curves in Figure 1-7 shows that it requires

much more solvent, consequently a longer time to remove the
N204, with the TeflonU_ in the syste_. Again, no significant

differences could be detected in the solvents tested. No

difficulty was encountered in removing N204 from the system

when there was onl_metal or hard parts exposed, but the addi-

tion of the Teflon _-vcreated an unexpected problem.

The compatibility of hard parts with solvents was considered,

since titanium stress corrosion is a serious problem in the

Apollo propellant tanks. Therefore, this part of the study

was included to alleviate the possibility of any of the flush

candidates adding to this probl_n. Also, many bromo and fluoro

compounds were added to the list of candidate solvents since

chloride ion contamination is thought to be a causative factor

in this stress corrosion.

Some suspicion of corrosion was aroused when close inspection

of the titanium alloy filings used in the nitrogen tetroxide

flushing experiments showed a change from a bright and shiny

surface to a dull green color. An x-ray analysis of these

filings was made, but the physical configuration was such that

no information was obtained. Therefore, a series of tests was

set up for the nitrogen tetroxide flushing candidates. Several

3 x I/2-inch specimens were cut from the propellant tank metal

(Ti-AI alloy) and placed in a 125-mi distillation flask along

with 70 ml of solvent and refluxed. An equal number of speci-

mens was placed in a flask with a 50/50 mixture of solvent

and nitrogen tetroxide. A blank specimen was placed in N204,
by itself and with the mixtures, and stored at room temperature

for 7 days. All specimens were exposed to liquid and vapor

for the same period of time. They were weighed before and

after exposure and microscopically inspected.

The tests provided little information, probably due to the

short exposure time. The weight change of the specimens was

within the range of error of the balance.

In addition to examining the behavior of the candidate solvents

on soft and hard parts, environmental changes such as elevated

temperature and longer soak times were considered. The curves

in Figure 1-8 show the effect of soak time and temperature in

removing the N204 from the system. Increasing the soak time
for each flush from i to 30 minutes increased the amount of

N204 removed from the system. The tests carried out at the

higher temperature using carbon tetrachloride affected an

increase in the removal of N204 from the system. The carbon

tetrachloride was heated to 75° C by placing an electric heat

tape around the solvent feed reservoir. The CCI 4 was fed to
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the test chamberat the above temperature, but when it was
drained, 30 minutes later, it was only 5 degrees above ambient.
Eve1_though the average temperature was only slightly above
ambient, more N204was removed from the system than at ambient.

The results for the removal of N204 from the system by various
solvents are sunmnarizedby the curves shown in Figure 1-9.
Figure i-i0 shows the evaluation of a mixture of solvents in
removing N204 from the system. All of the solvent mixtures
were 50/50 volume percent. No difference was detected in the
efficiency of the solvent since the amount of N204 remaining
in the soft parts was essentially the same for all solvents.
Table I-III summarize_the results of the removal of nitrogen
tetroxide from Teflon_ TFEby the various solvents.

F. Evaluation of Solvents for Aerozine-50 Decontamination

The apparatus used in this study is shown in Figure 1-4.

Approximately one-third of the test chamber was filled with

Ti-AI shavings. The elastomers used were 5-1/2" x 1/2" x

1/32" strips of Rulon and Stillman SR634-70 rubber. The

basic decontamination procedure used is briefly described.
The elastomers were immersed for a minimum of 24 hours before

testing. The contaminated samples were weighed, placed in

the test chamber, and one milliliter of A-50 was also added.

The test chamber was agitated for about 2 minutes before

proceeding with the flush. This was done to spread the A-50

as much as possible. The results of the tests are shown by

the curves in Figures i-ii and 1-12. Figure i-ii shows the

solvent absorption curves using halogenated solvents.

Figure 1-12 shows curves for methyl and ethyl alcohol, hexane,

and pentane flushing.

Stillman rubber and Rulon rapidly absorb A-50, but desorption

is difficult to bring about. It follows that the key to

reduction of contamination to a given desired level may be

the removal of A-50 from the system's soft parts. The first

method tried in determining the residual contamination level

remaining in the soft parts after flushing and in blanks was

to leach them with water. This method was unsuccessful;

leaching with dilute acid gave only a slight improvement.

It was found that refluxing the contaminated soft parts in

dilute acid for a period of 24 hours was a satisfactory

procedure. The information presented in the first series
of runs was inconclusive because the A-50 absorbed was not

satisfactorily determined.

The curves in Figures 1-13 and 1-14 show the decontamination

of the system using alcohols and other oxygenated compounds

at room temperature. Inspection of these figures shows the

alcohols are the best solvents for removing the fuel from the

test apparatus. The curves in 1-15, 1-16, and 1-17 were

developed from tests using various alcohols at elevated
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temperature. The curves show that an increase in temperature

improves the removal of fuel from the system and the elastomers.

The results are summarized in Table 1-IV for the Aerozine-50

decontamination investigation.
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G. Tables

TABLE i-I

Explosion Tests - Nitrogen Tetroxide Mixtures

Test Solvent

i. Trichloroethylene - 200 ml

2. 2,2-Dichloro- i, l-difluoroethyl

methyl ether - i00 ml

3. Bromodichloromethane - I00 ml

4. Tribromofluoromethane - 50 ml

5. Freo_ll (Fluorotrichloromethane -

I00 ml

6. Dibromochloromethane - I00 ml

Dibromochloromethane - i00 ml

Dibromochloromethane - i00 ml

7. l,l-Dibromo-2,2,2-trifluoroethane -
i00 ml

8. Freo_ll2 (mixed isomers of difluoro-

tetrachloroethane) - i00 ml

9. Freo_C-318 (Cyclo(CF2) 4 - 50 ml

i0. Dibromodifluoromethane - 50 ml

Ii. 50 Vol. % Freo_ll2 - I00 ml

50 Vol. % Bromochloromethane

Test Results

High order explosion

High order explosion

No explosion

No explosion

No explosion

High order explosion

No explosion

No explosion

No explosion

No explosion

No explosion

No explosion

No explosion
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TABLE I-II

Explosion Tests - Aerozine-50 Mixtures

Test Mixture

I. Methanol

2. Ethanol

3. n-Hexane

4. Aerofuel-50_

5. Aerofuel-50 _- Methanol

6. Aerofuel-50 _'- Ethanol

7. Aerofuel-5_ - n-Hexane

8. Aerofuel-50_- Methylene chloride

9. Aerofuel-5_;

i0. Aerofuel-50 _- Chloroform

ii. Aerofuel-5_ - Freo_ll

12. Aerofuel-5_- Freon_ll3

13. Aerofuel-5_- Bromochloromethane

Results

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sanrple cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact

Ignition. No detonation

Sample cup intact
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TABLE i-II (Cont'd)

Liquid Tested

Same procedure as above except the blasting cap was placed in the

liquid portion of the mixture.

Test Mixture

i. Aerofuel-5_

2. Aerofuel-5_ - Freon _ ii

3. Aerofuel-50 _ - Methylene chloride

4. Aerofuel-5_- Bromochloromethane

Results

Low order explosion.

No ignition

Low order explosion.

No ignition

Low order explosion.

No ignition

Low order explosion.

No ignition

VI-10



cO O_r_ u'_o 0 _0 cO 0 O_ 0

o,i
e

oJ

i
i

o_

m

2
-,-'4

•
,"4

O

0 _-_ _-_- _r_ u_ Od cO cO

c;Sd d6 d ,S d 6 o

OOkO (_ICO CO C_ 0_I 0 -_"

ddd ,$6 d d d d o

-_ 0 _-- C_r-I -_ D- u'_ cO 0

t'-"_- _- _- t" L'- u'_ kO D- _-

ddc; dd d d o ,S d

o

000
o,I 0J o,I

o

o_

4_

OO 0 0 0 0 0

o
o

I:q
o

¢-4,-I
o

_o_

_-o_

O,I
_D
O,I

O

O

O

O_

O

O
O,I

m_
,.-i o
o

Oo
t._ uN

8
d

,.-I

O

,-t

,-4
t',--

d

O

_o
r"-I 0

O0

'qD

0

0

0
0,1
p.-

0

0
0,/

H

¢-I

_o
_-I •
o
o_

i._ u'%

6

8
O

O

O
P,I

,-4
H

0
o o

OO
t£_ u'x

rt
c_

O

O

O

O
u'%

O

O

o

1.1"% U"%

VI-ll



kO _ t"- Lr'x t.rxO f-I -.._- t.t'x 0.1 0

Lr'x L"" Lr'x D" ..:_ CO kO CO D--

.r

...._ _- _o_ 0o_ rex _ O_
.._" _- L_'_ .-_" D-- Lr_t _- LrX L_-

c;c; ,tic; oo ,:;,:; ,:; _ c;

4-1

°ilo'1

oE

°I

,-I

o

dd_ _,fi d,d dd d d, o

co 0 k.O-..-l" Lr_O

O'xt.l_

_l dd od dd dd d _ d

° o
_ o

O0 O0 O0 O0 0 0 0

0

0 o _'

_ _ o

_-_
o

%

o

o

o

.H

o_

I

c_

,-I

Vl-12



H, Figures

FIGURE I-I

APPARATUS FOR DECONTAMINATION:

SYSTEM A

/_ ._ SOLVENTRESERVO LR

.i

l |

L VEIIT

I LII

%

SAMPLE ICHAMBER
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Figure 1-2

Apparatus for Decontamination:

System B

Solvent IReservoir

Solvent

Feed

Line

!
I

I

Sample Chamber

Containing 200 CC

Titanium Filings
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Figure 1-3

Apparatus for Decontaminatlon:

System C

I Gaseous
Nitrogen
Source

_ 8olvent

Stainless

Steel

Sample
Chambers

TitaniumParticlea
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Figure 1-4

Apparatus for Decontamination:

S_stem D

Solvent

Feed

Line

_-Titanium and 1

[Aluminum Filings

IStainl.ss-_eeU
Test Chamber
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Figure 1-5

REMOVAL OF Na04 FROM SYSTEM "B"
(System B is shown in Fig. 1-2. No AI filings.)

BY

i. FILL-EMPTY METHOD

Soak Time - i min.

No. of Flushes - 4

2. CONTINUOUS FLUSH METHOD

Soak Time - i rain.

No. of Displacements - 4

Volume of Solvent each Flush or Displacement: 250 ml.

Total N204 in System at Start: 1.4 gins.

By Fill-Empty
Method

By Continuous Method

Solvents

Carbo_Tetrachloride
Freon_Mll3 (TF)
Chloroform

%
%

% %•
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• • k
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0
0 200 O(

Milliliters of Solvent
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REMOVAL OF Ne04 FROM SYSTEM "B"

(System B is shown in Fig. 1-2)
BY

FILL-EMPTY M_fH, OD

Soak Tlme - 1 Min.

No. of Flushes - 4

Volume of Solvent Each Flush - 250 ml.

Total N204 in System at Start - 1.4 gins

i)
Solvent s

Freon_ 13 (TF)

Carbon Tetrachloride

Ch 1orgform
Freonq_l I (MF)

%

%
%

! ! I I II000bOU 800

Milliliters of Solvent
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(1)

Solvent s

Carbon Tetrachlorlde

Carbo_ Tetrachlorlde

Freo#_P!13 (MF)

Freon_#l I (TF)
Chloroform

Figure 1-7

REMOVAL OF N204 FROM SYSTEM "C'

(System C is shown in Fig. 1-3)
BY

FILL-EMPTY METHOD

Soak Time - 5 sin.
No. of Flushes -

Volume of Solvent Each Flush - 500 ml

Total N204 in System at Start - 2.1 gms

\
\

0

I i

I
0 500 I000

Milliliters of Solvent
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REMOVAL OF N204 FROM SYSTEM "D"

(System D is shown in Fig. 1-4)
BY

FILL-EMPTY METHOD

No. of Flushes

Volume of Solvent Each Flush

Total N204 in Syst_ at Start

Soft Parts - Teflo_(TFE)

Solvents

il CC14 (30 mln each flush) °C

CC14 _30 min[ each flush at 75 .)

CC14 _5 mln. each flush)
CC14 [i min. each flush)

W

0
0 500 75O

Milliliters of Solvent
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Figure 1-9

RH_0VAL OF Nm04 FROM SYSTH_ 'D"

(System D is shown in Fig. 1-4)
BY

FILL- HMPTY METHOD

"k No. of Flushes - 4

_) Volume of Solvent Each Flush 250 ml.
Soak Time 30 mln.o _ Total N_04 in Syste]K at Start 2.1 gin.

Parts - Teflo_TFE.)
@

Solvent s

Ii)I I, I, Dibromo ,2,2,2-trifluoroethane

Bromodichloromethane at 90°C.Bromodlchloromethane at amblent.
Carbon tetrachlorlde

1,1, Dichloro-2,2,2-t ri fluoroethane
Dibromodlfluoro Methane

Carbon tetrachloride at 75°C.

0
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Figure i-I0

REMOVAL OF Ne04 FROM SYSTEM "D"

(System D is shown in Fig. 1-4)
BY

FILL-EMPTY METHOD

Soak Time - 15 mln.

Volume of Solvent Each Flush - 250 ml.

No. of Flushes - 4

Total Aerozine-50 at Start - 2.1 gms.

All Mixtures 50/50 [volume)

Soft Parts - Teflon_TFE)

(i)

\

\

Solvent s

Freor_ll2 and Carbon tetrachlorlde

Freor_ll2 and Bromo_hloro methaneFreor ll2 and Freon_ll

Carbg_ tetrachloride

Freo_ll and chloroform

Freo_ll and carbon tetrachloride
Freo_ll2 and Chloroform

250
Milliliters of Solvent
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Figure I-ii

REMOVA_ OF AEP,0Z!_-50 _0M SYST_4"D"

(System C is shown in Fig. 1-4)
BY

FILL-EMPTY METHOD

No. of Flushes - 4

. Volume of Solvents Each Flush - 250 ml.

Soak Time - 5 mln.

Total Aerozlne-50 at Start - 1.70 gms.

Soft Parts - Butyl Rubber and Rulon

(

Solvent s

IllchloroformMethylene Chloride
Freo_ll (MF)
Freonmql3 (TF)
Carbon Tetrachloride

| I I
25O

I I I I I
500 750

Milliliters of Solvent
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FiKure 1-12

OF FROM SYSTEM 'D"
REMOVAL AEROZINE-50

(System D is shown in Fig. 1-4)

FILL-EMPTY METHOD

._ No. of Flushes - 4
Volume of Solvent Each Flush - 250 ml.

Soak Time - 5 mln.

l,OOn_ Total Aerozlne at Start - 1.70 gms.
Soft Parts - Butyl Rubber and Rulon

L %
_ lO0_

Methanol

O! I I I I I I I I ! I ' i
0 250 500 750 1000

Milliliters of Solvent
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Figure 1-13

REMOVAL OF AEROZINE-50 FROM SYSTEM "D'

(System D is shown in Fig. i-4)
BY

FILL-EMPTY METHOD

No. of Flushes - 4

Volume of Solvent Each Flush - 250 ml.

Soak Time - 15 .tin.

Total Aerozine at Start - 1.70 gins.
Soft Parts - Stillman Rubber and Rulon

Solvent___s

121 Ethanol ", _.___isopropyl Alcohol

131 Secondary Butyl Alcohol- Methanol _ (4)

-

Q I

0
0

Milliliters of Solvent
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Figure 1-14

\
\

\ (1) FILL-EMPTY METHOD

.__ _ No. of Flushes

\

Volume of Solvent Each Flush

. _ _ Soak Time
__) _ Total Aerozine at _tart

_ _ Soft Parts - Stil!man Rubber

REMOVAL OF AEROZINE-50 FROM SYSTEM "D"

(System D is shown in Fig. 1-4)
BY

- 4
- 250 ml.

- 15 min.

- 1.70 gms.
and Rulon

_o

_° I

Solvents

(I) Butylene Oxide

I_ Di°xanelAcetone

0 25O 500 "50
Milliliters of _o vent
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R_vi0VAL OF AEROZINE-50 FROM SYSTEM, "D"

(System D is shown in Fig. i-_)
BY

FILL-EMPTY METHOD

No. of Flushes - 4

Volume of Solvent Each Flush - 250 ml.

Soak Time - 30 mln.

Total Aerozlne at Start - 1.70 gms.
Soft Parts - Stillman Rubber and Rulon

l)

So!vent _

12! Ethanol
Isopropyl

See-Butyl

toAlcohol at

at 50°C.

Alcohol at lO0°C.
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Figure 1-16

REMOVAL OF AEROZINE-50 FROM SYSTEW,I "D"

(System D is shown in Fig. i-4)
BY

FILL-EMPTY METHOD

No. of Flushes -

Volume of Solvent Each Flush - 250 ml.

Soak Time at Elevated Temp. - 30 mln.

Soak Time at Ambient Temp. - 15 min.

Total Aerozlne at Start - 1.70 gms.
Soft Parts - Stillman Rubber and Rulon

i)

i

i

i

I

w

I

i

Solvent

Ethanol at ambient

Isopropanol at 80°C.

Isopropano! at ambient

Ethanol at 65°C.
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Figure 1-17

REMOVAL OF AEROZINE-50 FROM SYSTEM "D"

(System D is shown in Fig. 1-4)

FILL-_PTY METHOD

No. of Flushes - 4

Volume of Solvent Each Flush - 250 ml.

Soak Time at Elevated Temp. - 30 mln.

Soak Time at Ambient Temp. - 15 mln.
1,000 Total Aerozlne at Start - 1.70 gms.

Soft Parts - Sti!lm__n Rubber and Rulon

iL
-_ zoo I_

ii
ooIven_ _ _ _ "_ _

I) _iethanol at 50 C. _ _JJ..-

2_ Secondary Butyl Alcohol at 100°C. _ -- "" ----

31 Secondary Butyl Alcohol at ambient _4)

4) Methanol at amolent
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Vll. UNITS la AND ib - SOLVENT REGENERATION TECHNIQUES

A. Summary

. Hydrazine and unsymmetrical dimethyl hydrazine (UDMH) may

be efficiently removed from polar (methanol) or non-polar
(Freon _ 113) solvents by cation exchange resins (Dowex_W

50W-X8, 50-100 mesh, H+). This is the recommended procedure.

. Silica gel, water-swollen, and containing dissolved sodium

hydroxide, is a very effective extractant. It appears to

offer no particular problem. This appears the most satis-

factory of the column extraction methods for N204.

3. Water extraction is very effective for N204.

. Blowing-out of N204 by use of air or nitrogen reduces acids

to low levels, with residuals being components other than

N204. Blowing-out equipment could be constructed and

operated quite simply. Blowing out followed by extraction

with caustic laden silica gel is the recommended procedure.

As a portion of the total effort under this contract, it was

deemed desirable to develop methods for removal of active fuel

and oxidizer agents, vlz. hydrazines and nitrogen tetroxide,

from flushing solvents. The purposes are twofold: (i) to

permit repeated recycling of solvent as flush to propulsion

system, and (2) to minimize disposal problems of contaminated

solvents.

Several ideas were considered in the original contract proposal

which involved such extraction techniques as ion exchange,

liquid-liquid extraction, adsorption, and gel-water extraction.

This report discusses the experimental results of these studies

and includes comments on additional concepts which were tested.

B. Experimental and Results

Io Source of Materials

The solvents used were commercial grade methanol and Freo_

113 obtained from du Pont. They_ere used as received.

Preliminary attempts to use Freon_ll were discontinued

because its high volatilitymade laboratory operations

without special equipment very difficult.

Anhydrous hydrazine and unsymmetrical dimethyl hydrazine

(UDMH) were obtained from Olin and FMC respectively. These

were transferred by pipet into clean bottles and diluted

with solvent to give approximately 500 ppm solutions.

Nitrogen tetroxide (N204) was obtained in a 5-1b. cylinder
from Matheson. A small volume was_transferred to a chilled

bottle and diluted with cold Freo_ll3 to give a stock

solution which was diluted to 500 ppm as needed.
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The two major resins used were _we_ 50W-X8,50-100 mesh,
H+ form (Lot 07285-W2)and Dowex_y21K, 50-100 mesh, CI-
form (Lot 03124-668). Oneml of the resin as received
waswashed into a column madeby putting a glass-wool
plug in a 2 ml graduated pipet. The i ml bed of resin
had a height of about 9.7 cm and a cross-sectional area
of approximately 0.I cm2.

Themolecular sieves were grade 5A from Linde. The silica
gel was grade 42 from Davison, 6-16 mesh. The desired
water content was achieved by placing the adsorbents and
water in separate shallow dishes in a desiccator and
allowing sufficient time for equilibration. In the case
of the silica gel containing NaOH,this adsorbent was
prepared by in_nersing silica gel containing about 9%
water in a i N solution of NaOH.

2. Analytical Methods

.

Both the hydrazines and the N204 were determined by acid-
base titration. When the solvent was inmliscible with

water, the titration was carried out in a stirred two-

phase system with the electrodes in the water phase.

In the case of the hydrazines, it was necessary to perform

the titration on the recording titrator since the break

was quite shallow and tended to vary in pH with concen-

tration and solvent ratio. Equilibrium was obtained

relatively rapidly. The N204 solutions were titrated to

pH 7 using a standard pH meter. However, in most cases,

they were very slow to come to equilibrium, often

requiring at least 15 minutes to obtain a pH of 7 which

did not drift. It is not known whether this is a charac-

teristic of the N204 or is due to the presence of some

trace acidic component in the system. The latter seems

more likely.

Fuel Side

a. UDMH from Freo_ll3 by lon Exchange

The e_cess water was blown out of the i ml column of
Dowex_5OW, H+ and a 450 ppm (0.012 N) UDMH in Freo_

113 solution was passed through it. The effluent was

collected in appropriate cuts and titrated. The first

160 ml contained 4 ppm or less of UDMH. After an

additional 30 ml, the concentration was about I00 ppm.

There was no observable water phase in any of the cuts.

The flow rate was very uneven but averaged roughly

I ml/minute which is equivalent to 2.5 gpm/sq.ft, or

7.5 gpm/cu.ft.
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As a check on the ion exchange capacity of the column,
it was regenerated with 5 ml of N HCI, rinsed and
exhausted with a NaNO3 solution. The effluent was
titrated for H+ giving an exchange capacity of 1.63 meq.

The column was regenerated with I0 ml N HCI, rinsed,
and the UDMH-Freon_II3 run repeated. --The flow rate
was held fairly constant at I ml/minute in this run.
The effluent concentration is shown in Figure la-l.
A volu_e of 150 ml was obtained in which the UDMH

concentration was less than 2 ppm and an additional

20 ml at less than 5 ppm, followed by a fairly sharp

breakthrou_ to feed c_centration. Thus, in each of

these runs the resin is removing approximately 160 x

0.012 = 1.9 meq of UDMH, or slightly more than the

exchange capacity. The water-swollen resin apparently

has some sorptive capacity for UDMH in the Freon_ll3

system.

b. UDMH-Hydrazine from Methanol by lon Exchange

When the information was received that methanol was

the current solvent of choice on the fuel side, the

above runs were repeated with a UDMH-methanol solution.

The column was refilled with new resin and the water

was displaced from the resin by a methanol wash prior

to the run. The feed solution was a 400 ppm (0.0054 N)

solution of UDMH in methanol. The flow rate varied from

0.5 to 1.0 ml/minute. The first three i00 ml cuts

collected contained 2, 4, and 8 ppm UDMH, respectively.

After this, the effluent concentration increased to feed

concentration within the next i00 ml. The capacity

obtained was slightly greater than 300 x 1.0054 = 1.6 meq.

The column was regenerated with 50 ml of N/4 methanolic

HCI prepared by adsorbing HCI gas in methanol. The UDMH

in the regenerant effluent was estimated, by titration

after the addition of excess base, to be 1.6 meq. This

determination is subject to considerable error if the

base added contains any carbonate.

This regenerated column was again exhausted with the

UDMH-methanol solution at a flow rate of about 0.5 ml/

minute with the following results:

Concentration

Cut No. Volume of UDMH

1 250 ml 1.5 ppm

2 25 16

3 25 64

4 25 160

5 25 250

6 25 400
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While the breakthrough occurred slightly earlier, the

total UDMH picked up was 1.7 meq. Regeneration with

50 ml of N/4 HCI in methanol removed 1.7 meq of UDMH.

A sample of anhydrous hydrazine was obtained at this

time and a new feed solution was made up containing

equal parts by weight of hydrazine and UDMH. This

feed solution behaved identically with the previous

UDMH-methanol solution in the column experiments.

A series of runs were made in an attempt to optimize

the regeneration conditions using methanolic HCI.

Acid concentration was varied from 2 N to N/8, amount

of acid from i0 to 20 meq, and contact time from I0 to

40 minutes. The results were erratic, partially as a

result of analytical difficulties, and possibly

partially because of kinetic problems in the non-

aqueous system. Certainly more work would be required

before the best conditions for such a non-aqueous

regeneration scheme could be set.

The original intent in using an all methanol cycle

was to avoid contaminating the solvent with water

with the subsequent necessity for a drying step.

Such a scheme would be attractive if the process

were to be run on a frequent cyclic basis. However,

in the current use, where the system is to be used

only intermittently, rough economic estimates indi-

cate that a disposable resin bed, or even discarding

of the methanol might be more attractive overall.

UDMH from Freo_ i13 Using Molecular Sieves

Batch equilibrium studies were carried out to determine

equilibrium adsorption of UDMH at various UDMH concen-

trations. The results, shown in Figure la-2, show that

UDMH is not strongly adsorbed by molecular sieves

containing_bout 9% water. A column experiment in
which Freor_ i13 containing 500 ppm UDMH was passed

through a column of molecular sieves containing about

9% water, gave similar results, namely poor adsorption
of UDMH.

UDMH from Freo_ I13 Using Silica Gel

Batch equilibration of 500 ppm UDMH solution in Freo_

113 with silica gel containing about 9% water showed

rather strong adsorption of UDMH. These results are

shown in Figure la-3. A column experiment, using a

2 ml measuring pipet containing 2.0 ml silica gel

(9% water content) as the column, gave evidence of

good adsorption of UDMH, although air pockets in the

column caused operating problems. Another column run,
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using 3.4 ml of silica gel in a column 3/8" x 8",

showed good pickup of UDMHwith little leakage of

UDMH. The results of this run are shown in Figure
!a-4, _ere it can be seen that 73 bed volumes can

be treated to a 5 ppm UDMH breakthrough, or 88 bed

volumes to a I0 ppm UDMH breakthrough. When word was

received that methanol would probably be used as the

solvent for the fuels, work on this type adsorbent

was discontinued, since the use of adsorbents con-

taining water require an immiscible solution for

application.

4. Oxidizer Side

a. N204 from Freo_ll3 by Ion Exchange

A column containing i ml of Dowe_21K, CI-, was

regenerated with I0.0 ml of N NaOH. The CI- eluted

was 1.05 meq. The excess water was blown out of the

colum_and a 380 ppm (0.013 N) solution of N204 in
Freon_Y I13 was passed through it. The flow rate

varied from 0.5 to 2.0 ml/minute. The acid in the

effluent averaged about 3 ppm (expressed as N204)

for the first 275 ml collected. This represents an

acid pickup of over 3.5 meq on a column with an

exchange capacity of 1.05 meq. There was no break-

through to feed concentration at this point. Instead,

the effluent concentration rose to about 45 ppm and
held there for another 300 ml of effluent at which

point the run was stopped. This represents the pickup

of approximately another 3.5 meq of acid. At this

point the column was regenerated with 25.0 ml of N

NaOH and the regenerant effluent and rinse-back

titrated with standardized HCI. This titration indi-

cated that 5.8 meq of anion was stripped from the

colunm, which substantiates the 7.0 meq picked up.

The water swollen Dowe_21K obviously has a considerable

sorptive capacity for N204 in this system, enough so that

it would appear potentially hazardous in that the organic

resin might easily accumulate enough N204 to trigger a
violent oxidation. There was a chemical reaction in the

resin as shown by a slow continuous generation of gas in

the column. This gas evolution appeared to continue even

after the regeneration with NaOH. Attempts to detonate
a few beads of the loaded resin with a hannner failed.

When ignited in a flame they did not show any tendency

to Sputter or pop.

RemovAl of N204 from Freo_ I13 was also tried using

Dowex_44, an anm_nia-epichlorohydrin condensation resin.

The resin was converted to the free-base form and
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thoroughly rinsed. One ml of the resin was placed in

the column and a 500 ppm N204 in Freo_ _ 113 was passed

through it. A volume of 125 ml was collected with a

residual acid of about 5 ppm N204. By the end of this
volume the flow had practically stopped because of

increased pressure drop in the bed. After standing

overnight, the upper portion of bed was found to be

softened and even partially liquified.

N204 from Freo_' 113 by Degassing

In working with the N204-Freo_' 113 solutions, it was

observed that N204 was lost from solution at an appre-
ciable rate if the container was left open to the

atmosphere. It therefore seemed logical to try a

degassing or desorption scheme.

A small desorption unit was set up as in Figure la-5.

The size of the packed column was roughly 8" x I" and

the packing was 1/4" saddles. The liquid distribution

was quite poor and it tended to run down the sides of

the column. The sweep gas was plant nitrogen; the

flow rate was measured by means of a small rotameter,

and controlled at roughly 5 ml/second. The exit gas

was bubbled through a solution of standardized caustic.

In the first run the feed solution contained 712 ppm

of N204. Two i00 ml cuts were obtained:

Cut No. Ave. Flow Rate Residual Acid As N204

i 1.65 ml/minute 0.00148 N 43 ppm

2 2.2 ml/minute 0.00137 N 40 ppm

There was no color left in the product. The amount of

caustic neutralized in the scrubber was 4.5 meq. The

approximate amount of acid removed from the product =

V_C = 200 ml (0.0244 N - 0.0014 N) = 4.6 meq

In a second more extended run air was used as the sweep

gas and the feed contained 506 ppm N204. A total of

4,314 g of product (I) was collected at an average flow

rate of 1.2 g/minute (_0.8 ml/minute). This had a

residual content of 0.0021 _ (61 ppm as N204). In a

third run using the same feed but at an average flow

rate of 13.2 g/minute (8.4 ml/minute), 1,320 g of pro-

duct (II) was obtained with a residual acid content of

0.0043 N (125 ppm as N204). This product had a trace

of the brownish N204 color left in it. There was no
appreciable amount of Freo_$_ll3 collected in the gas

scrubber in any of the runs.
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Several techniques were +_+ _ +__e_ for _,,e reduction of the

residual acidity from the degassed product. A portion

of product (I) was passed through a 1 ml column of
Dowe_ _ 21K -_ L _ ..............WL*_CL* had u_, L_g_n_au_u with 5.0 ml of

NaOH. (CI- eluted = 0.84). A total of i,I00 ml was

put through the bed and the effluent concentration was

still less than 1 x 10 -4 N. Total acid picked up was

approximately 2.2 meq on an exchange capacity of 0.84

meq. Rinsing the bed with about 70 ml of acetone at

this point eluted considerable yellow color and 0.93

meq of acid. There was no noticeable degradation of

the resin.

A 200 ml sample of product (I) was allowed to evaporate

in a tared dish. The residue was 0.I0 g or about 0.03%.

Another portion of product (I) was flash distilled until

98-99% of the material had gone overhead. The residue

was found to contain only a trace of acid while the

distillate was 0.0015 N, as compared with 0.0019 N before

distillation.

A 250 ml portion of product (II) _s shaken with 25 ml

of water and separated. The FreonUW_hase was found to
have an acid content of only 9 x i0- N after this

extraction.

As a final step these samples were examined by means

of their visible and UV adsorption spectra using a

Cary Recording Spectrophotometer. The results are

shown in Table la-l. The strong peak at 340 u is the

major contribution of the N204. The absence of any

adsorption at this wavelength in product (I) indicates

that N204 can be removed completely by careful degassing

and that th___eeresidual aci____ddis no__!tN204. The distillation

experiment shows that th_+residual_d base volatility

approached that of Freon_ i13. The extreme slowness

with which it titrates, probably due to a slow diffusion

from the organic into the aqueous phase, suggests a

rather hydrophobic material. This might be a halogenated

organic acid formed f_om the action of the N204 on some

impurity in th_ Freon _ 113. It is not present in the
original Freon _ 113.

C,

Another unknown impurity which show_ an adsorption at
275|x is a higher boiler than Freon _' 113 and may repre-

sent an impuri_ in the N204, a reaction product of

N204 and Freon_' 113, or simply some material such as

stopcock grease picked up in processing the sample.

N204 from Freo_ 113 Using Molecular Sieves

Freon_ I13 containing about 500 ppm N204 was passed

through an 8" high bed of molecular sieves containing
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10.6% water. The pickup of N204 was very poor, the
first effluent cut being about 55% of the feed concen-

tration, with subsequent cuts being of even higher

concentrations. Next, some molecular sieves were

saturated with water prior to loading in an 8" high
column. This increased waste content of the molecular

sieves resulted in much stronger adsorption of N204.

While the leakage level was not as low as desired,

approximately 175 bed volumes were treated to yield an

overall N204 concentration of I0 ppm.

A problem of molecular sieve degradation appeared

during this run. The sieves at the top of the column

were reduced to a powder and the sieves were observed

to be quite friable when the column was unloaded. In

addition, the effluent during the water regeneration,

produced a white flocculent precipitate when it was

titrated to a neutral pH. X-ray diffraction of the

ignited precipitate indicated that it was A1203, thus
confirming the belief that the flocculent precipitate

was AI(OH)3. Thus, molecular sieves do not appear to

have sufficient chemical stability for this application.

The use of a bed off,dry molecular sieves as an adsorbent

for N204 from Freon_ ' 113 was also investigated. In this

case, the molecular sieves would act as an adsorbent of

polor molecules rather than as a support for water.

This system was found to be ineffective however, the

first effluent cut containing 12 ppm N204, the next cut

containing 55 ppm N204.

N204 from Freo_ I13 Using Silica Gel

Two series of equilibration experiments were carried

out using silica gel containing about 9% and about

16.7% water. In both cases, the adsorption was not

very strong at low concentrations of N204, although

strong adsorption was observed at higher concentrations.

The adsorbent with the higher water content showed the

stronger adsorption of N204, as can be seen from Figure
la-6, which shows the results for both adsorbents.

In a column contact of 500 ppm N204 solution with
silica gel containing about 9% water, the effluent

showed a gradual increase in N204 concentration; only

the first fraction was at a N204 level below i0 ppm.

The next column experiment, with silica gel containing

21.9% water, gave lower N204 levels in the effluent

than in the previous run, but again showed a steady

increase in N204 leakage from the start of the run.
Again, only the final fraction contained less than

I0 ppm N204. The elution of the adsorbed N204 with
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water showedcomplete removal, with most of the
desorbed material coming off in the first fraction.

In an attempt to increase the adsorption of the N204,
a quantity of silica gel was equilibrated with i N
NaOHsolution. After removal of the gel from the--
NaOHsolution, it_was placed in an 8" high column_and
rinsed with Freon_ 113, prior to passage of Freon_g_I13
containing about 500 ppmN204 through the column. This
adsorbent was found to give much lower N204 levels in
the effluent. Approximately 140 bed volumes of efflu-
ent were treated to a breakthrough of 5 ppmN204.
Removalof the =a_bed material was attempted by
eluting the bed with water. The first fraction was
acidic, and titration of this acid accounted for 63%
of the N204 adsorbed. Subsequent fractions were
alkaline, due to the NaOHleaking from the bed. It
should be noted that the adsorbent held material in
excess of that neutralized by the NaOHtrapped in the
gel.

In order to determine whether any of th_NaOH in the
silica gel might diffuse into the FreonU_solution as
it passes through the column, an experiment using
radioactive sodium was run. The i N NaOHsolution
was spiked with Na22 prior to equil_bration of the
solution with the silica gel. The gel was then dried
on a paper towel to remove excess solution. The
radioactivity of the gel was determined and compared
to the radioactivity of the solution before contact
with the gel. The activity on the gel was 71.5%.
The gel was then_laced in an 8" high column and
rinsed with F_eon_ 113. No activity was detected
in this Freon_ll3. Next, a 500 ppmsolution of
N204 in Freon_ 113 was passed through the column and
fractions collected. In order to concentrate the
Na22 activity, each i00 ml fraction was shaken with
2.0 ml_of a hydrogen form cation exchange resin
(Dowex_' 50W-X4,50-100 mesh). After contact, the
resin was filtered, rinsed with water, and trans-
ferred to a test tube for counting. The results are
given in Table la-ll, which gives the activity of the
samples, the Na+ concentration calculated from the
activity, and the concentration of N204 or hydrolysis
products in the fractions. The erratic behavior
observed is unexplained_ although the amount of Na+
leaked out by the Freonn__113 is certainly below
maximumallowable limits.

Water elution wasused to desorb the N204and hydrolysis
products. Most of the Na22 activity eluted in the first
fraction. The gel was counted after water elution and
found to contain no Na22 activity. A material balance
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on the Na 22 activity was not obtained because of the

resin contact method for concentrating the activity.

In the effluent samples during the water elution,

the high acid concentration prevented complete pickup

of the Na+ ions on the resin.

e.

To investigate the effect of a higher flow rate on the

pickup of N204 by silica gel containing NaOH, a run
was made at a higher flow rate. The silica gel was

equilibrated as before with I N NaOH. The column was

-_17" high and 0.342" in diameter. The flow rate

averaged ll.1 ml/minute, which is equivalent to 4.6

gallons/sq.ft./minute. At this high flow rate, it

was visually noted that the leading edge of the adsorp-

tion band was fairly broad, approximately 6" in width.

The results of this run are shown in Figure la-7,

where it can be seen that the lowest concentration of

N204 in the effluent was 7 ppm.

N204 Extraction from Freo_ i13 with Water

In order to stu_ the feasibility of extraction of

N204 from FreorNYll3 with water, the partition of

N204 between these two phases was studied. (This

was accomplished by shaking water with a solution of
N204 in Freon 113 until equilibrium was obtained,

followed by an analysis of N204 concentration in
each phase. Various points on the curve were generated

by varying the ratio of the two phases.) The results

are shown in Figure la-8. It can be seen that the N204

concentration in the water phase is directly propor-
tional to its concentration in the Freon_Y 113 phase

with a distribution coefficient of 157, i.e. the N204

concentration in water divided by the No04 concentration

in Fr_on_Y I13. The rate of extraction if N204 from

Freon _y 113 wa_ studied by shaking a 500 ppm N204 solu-
tion in Freor_ i13 with water at a phase ratio of I0:i

(organic:aqueous), followed by analysis of the N204

concentration in each phase. The results are shown

in Figure la-9, where it can be seen that extraction

is virtually complete after 5 minutes.

C. Conclusions

Hydrazine-UDMH from Methanol

Cation exchange resin removal is recom_nended.

Resin: Dowe_50W-X8, 50-100 mesh, H+.

Operation: One cycle; no regeneration.
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Capacity:

Flow Rate:

Bed Depth:

Pre-Rinse :

Column Design:

Breakthrough :

1075 gal. 500 ppm feed/cu, ft.

3 gpm/ft. 2

3-5 ft. ; diameter as needed.

5 bed volumes methanol.

Standard, fixed bed.

Analysis by pH.

N204 from Freo_ll3

Choice to be made between (I) caustic in silica gel, (2) water

extraction, or (3) degassing or combination of (3) with (I) or

(2).
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Fraction (i)

TABLE la-il

Na 22 LEAKAGE FROM NaOH TREATED SILICA GEL

N204 Concentration Na 22 Activity(2)

I

A96 counts/min.

2 .00037 N 10.8 ppm 9 (510)

3 .00018 N 5.3 ppm 507 (510)

4 .00004 N 1.2 ppm 901 (510)

5 - 614 (510)

6 .00006 N 1.8 ppm 4_0 (425)

7 .00037 10.8 ppm 524 (425)

Na Concentration

Nil

Nil

6.6 x 10-6 N

1.8 x 10-6 N

2.5 x 10-7 N

1.7 x 10-6 N

.084 ppm

.025 ppm

.0035 ppm

.024 ppm

(i) All fractions i00 ml volume.

(2) Figures in parentheses are background counts.
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Figure la-I

FEED CONCENTRATION

COLUMN STUDY -

Adsorption of UDMH from
FreoI_ll3 on DoweX_5OW-XB (H+)

Flow Rate - 1 ml/minute

Column - 3 mm x 97 rain.
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Figure la-2

EQUILIBRATION STUDY

Removal of UDMH From Freo_ll3

by Molecular Sieves 5H (9% H20)
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Figure la-3

REMOVAL OF UDMH FROM FREOR_13 BY

SILICA GEL (9% He0)
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COLUMN STUDY
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Figure la-5
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VIII. UNIT 2 - SOLVENT D_TELOPME_

A. Summary

I. Correlating the results of the thermodynamic calculations

with the knowledge of compatibility gained from the detona-

tion tests, the following generalizations appear valid:

a. Solvent-N204 systems having a AF value less than

2 Kcal/gram N204 are not detonatable regardless of

the size of the triggering charge. These solvents

are compatible with N204.

b. Solvent-N204 systems showing aAF value greater than

2 Kcal/gram N204 can be detonated if given sufficient

shock. These solvents are not compatible with N204.

2. The results of the compatibility study of elastomers with

candidate solvents are given below:

a. Teflo_TFE and FEP are compatible with the propellant

and all solvents.

Do KeI-F No. 300 was not compatible with the propellant.

Failure occurred within one week in the N204 test and
within three weeks in the Aerozine-50 test.

c. Kynar was found to be compatible with propellant and

solvents.

d. Stillmsn SR634-70 rubber was not compatible with

Aerozine-50. Failure occurred within five weeks.

By comparison, B. F. Goodrich' IIR-50 butyl rubber

showed a gain in tensile strength.

e. Rulon was found to be compatible with propellant and

solvents.

. The elastomers absorb a substantial quantity of propellant.

The results show that the amount of contaminant diffused

from the elastomer per unit of time is proportional to the

amount present at that time; therefore, the rate the

contaminant diffuses from the elastomer can be expressed

mathematically by this equation:

K ffi2.30_____3 log, _
t2-tl " c2

where : cI ffithe initial concentration

c2 = the final concentration of contaminant
in the elastomer

tI = the initial time

t2 ffithe final time
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The constant (K) is the specific rate constant or velocity
constant for a first order reaction.

a. The specific rate (K) for the diffusion of N204 from

Teflon_F_ at ambien T temperature shows values of
1.4 x I0 -J, 1.5 x I0 -_, and 1.8 x 10 -3 in environments

of GN 2, Freo_TF, and CCI 4. These results show the

diffusion rate to be independent of environment.

b.

C.

The diffusion of A-50 from Stillman rubber at ambient

conditions in environments of GN 2 and methanol shows

a (K) value of 3.06 x 10 -4 for both environments.

The results of N204 diffusion from Teflon_FEP tests

made at 25 ° , 65° , and I00 ° C using GN 2 purge show (K)
values of 1.4 x 10 -3 , 3.4 x 10 -3 , and i.i x 10 -2 .

This implies that the diffusion rate is temperature

dependent. Plotting these points on semilog paper

shows a reasonable fit; therefore, the diffusion rate

increases exponentially as the temperature is increased.

. The results of tests show that the flushing solvents can

tolerate several hundred parts per million of the contami-

nants and still effectively extract the contaminant from
the elastomer.

B. Solvent Selection

I. Candidate Solvent l.istin$

A list of candidate solvents (over 200) was compiled.

No consideration was given in this compilation to

availability or cost. This master list was reviewed

and solvents were selected as promising candidates.

These solvents are shown in Table 2-I. Each of these

solvents was subjected to at least one test of some

type.

2. .Thermodynamic Calculations

Some thermodynamic calculations for the reactions of

nitrogen tetroxide with various solvents were made to

determine if a correlation could be drawn between the

ergy change and compatibility. Thereat of reaction

300OK and the change in free energy LIF300o K were

determined according to the following equations:

_H = (HF N204 + HF Solvent) - (HF Products )

_F = (FN204 + FSolvent) - (Feroducts)

The results are given in Table 2-11, which lists the

assumed or possible reaction of solvent and oxidizer

together with the calculated heat of reaction and free

energy change.
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C.

In considering the equilibria involved in the assumed

reaction, the further assumption was made that the

reaction would ultimately go to completion, bearing

in mind the possibility of stepwise and side reactions.

The heat of reaction and free energy changes in each

case.were negative indicating heat would be evolved and

the reaction would proceed.

Correlating theresults of these calculations with the

knowledge of compatibility gained from the empirical

detonation tests the following generalizations would

appear valid: ({) Solvent-N204 systemsshowing a _F

value less than 2 Kcal/gram N204 are not likely to be

detonated regardless of the size of,the triggering charge.
(2) Solvent-N204 systems showing a _F value greater than

2 Kcal/gramN204 can probably be detonated given suffi-
cient shock.

These considerations point out that compatibility of

solvents with N204 covers a broad spectrum of values

relating to the initiating charge required for detona-

tion. There are presently no standard requirements or

standardized testing procedures.

All results which are currently available are based upon

arbitrary conditions of charge, placement of charge, and

concentration.

3. Compatibility Tests

Compatibility tests were made to determine the effect of

propellant and various solvents on the soft parts. The

test procedure used was ASTM Designation D543-60T,

"Resistance of Plastics to Chemical Reagents." This

method includes procedures for measuring changes in weight,

dimensions, appearance and strength properties. The materi-

als used in this study are the elastomers and solvents

shown in Table 2-111. The results are also given in this

table. The elastomer was considered not compatible with

the solvent if the elastomer showed a loss of 25% in

tensile strength.

Fundamental Study of De_assin_ of the Contaminants From
Elastomers

The elastomers contain the residual-propellant contaminants

that remain after the Apollo tanks have been flushed with a

solvent. Previous work indicated that the contaminants are

absorbed in the capillaries of the elastomers and, conse-

quently, the source of contamination. Therefore, a study

was initiated to determine the rate at which the contaminants

degassed from the elastomers, i
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I. Procedure

The procedure used in carrying out these tests at ambient

conditions is as follows. Sample specimens of the elas-

tomer were immersed in the contaminant (N204 or A-50) for

several days, and the weight gain was recorded. After

determining the contaminant content of each specimen, they

were placed individually in 50 milliliters of the solvent

under test. The samples were removed from the solvent at

specified time intervals and weighed, and the contaminant

content of the solvent was determined.

The tests made at elevated temperatures were carried out

in this manner. The solvent was placed in a round-

bottomed flask which was provided with a heating mantle.

Heat was applied, and the temperature of the solvent was

increased to boiling. The vapors from the boiling solvent

were introduced into the top of a metal test chamber.

Specimens of the elastomer containing the contaminant

were positioned in the chamber between wire screens.

The rate at which the solvent was boiled off was suffi-

cient to maintain vapors in the chamber after the

chamber reached the boiling temperature of the solvent.

The exit vapors passed through a condenser and the

condensate collected in a graduate. The amount collected

in a specified time interval was noted, and the contami-

nant in the condensate determined. The test using steam

was essentially carried out in the same manner as the

solvent test except that the steam was received from a

low pressure steam line. Approximately 13 psig steam

pressure was maintained by snubbing the valve in the line

of the test chamber. Other test procedures used will be

described when the specific test is discussed.

2. Degassing of N204 From the Elastomers

The first objective was the screening of selected solvents

to determine if one was more effective than the others in

the removal of No04 from the elastomers. The solvents
used were Freo_MF, Freon_ TF, carbo_ tetrachloride, and

GN 2. The elastomers used were Teflon_ FEP, Teflon_]TFE,

Rulon, and Kynar. The procedure, described above, was

used in carrying out the tests. The results are given

in Tables 2-1V through 2-1X. These tables show the elas-

tomer, solvent, the time in minutes that the elastomer

was immersed in the solvent, the N204 absorbed in the

elastomer expressed in milligrams per square centimeter,

and the percent of N204 retained in the elastomer.

The results show, at ambient temperature, that all of the

solvents and GN 2 have about the same N204 removal rate.

An increase in the temperature shows a definite increase
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in the amount of N204 removed in a given period of time._

Rulon and Kynar absorbed more N204 than did the Teflons

Removal of Aerozine-50 From Stiilman SR634-70 Rubber

Stillman SR634-70 Rubber was the elastomer of primary

concern in the fuel side since the other elastomers

did not absorb an appreciable amount of A-50. A series

of tests was made to determine the removal rate of A-50

from the Stillman rubber at ambient temperatures using

methanol, water, acetone, iso-octane, benzene, and

formamide. The procedure was the same as described

previous I-- wh .... consisted ^; 1_crslng the contmm_-a _o_

specimens in solvent for specified time intervals. The

results of these tests are given in Tables 2-X and 2-XI.

The only significant difference shown by the results was

that benzene and iso-octane appear to be superior sol-
vents, but these solvents caused considerable distortion

(swelling and elongation) of the specimens. These sol-

vents are not compatible with the rubber.

The rate at which A-50 was removed from Stillman rubber

using a gaseous nitrogen purge was investigated at 25 ° C

and 90 ° C. The apparatus used for the 25 ° C test con-

sisted of a 200-milliliter, stainless steel test chamber.

The specimens were sandwiched between stainless steel

wire screens and placed in the chamber. A fixed rate of

nitrogen gas was introduced into the top of the chamber,

and the exit gas was scrubbed with water to catch the

A-50. The water trap was changed at specified time

intervals and A-50 determined. A Cenco moisture balance

purged with GN 2 was used in carrying out the 90 ° C test.

The balance was equipped with an infrared lamp to supply

the heat, and a galvonometer was used to measure the

temperature. The weight loss was determined directly

from a rotating scale. The results of these tests are

given in Table 2-X. The results shown in this table

indicate that, after 240 minutes, 93.1 percent of the

A-50 was retained at ambient temperature and, after

80 minutes at 90° , only 13.6 percent was retained.

The removal of A-50 from Stillman rubber at 65 ° C and

i00 ° C was determined using methanol and isobutanol

vapors using the procedure described previously. The

results are given in Table 2-XIII and are consistent with

the previous results in that the A-50 degassing rate is

increased at the higher temperature. Table 2-XIV shows

the removal of A-50 from the rubber using 13 psig steam

(119 ° C). The results show that approximately 97.5 per-

cent of the A-50 was removed in 168 minutes.
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D. Discussion of Results

The degassing of the elastomers expressed in milligrams per

square centimeter given in Tables 2-1V through 2-XIV is shown

graphically in Figures 2-1 through 2-13. The figures show a

plot on semi-log paper of the degassing value (mg/cm 2) versus

time.

A straight line was obtained for each test, indicating that

the amount of materials degassed from the elastomers per unit

of time is proportional to the amount present at that time.

The fact that this rate of decrease is proportional to the

amount of materials present can be expressed mathematically

by the equation:

dcA
dt - KcA (I)

where : c = the concentration of degassing

material (A)

K = a proportionality factor

t = time

-dc/dt = the rate the concentration in the

elastomer decreases

Integrating Equation (i) between the limits of concentration

(Cl) , at time (tl) , and (c2) at a later time (t2) is shown
below:

I c2 I t2
dc = K dt =
C

cI 'tI

-inc 2 - (-InCl) = K(t 2 - tI )

K _. u2.303 • log Cl
t2-t I c2 (2)

This is the equation usually given for a first order reaction.

The constant (K) is called the specific rate constant or the

velocity constant, and for a first order reaction, it is a

number per unit of time. It is evident from Equation (2) that

a straight line is produced when the logarithm of the concen-

tration is plotted against time. The rate constant (K) can

be calculated in Figures 2-1 through 2-13 by multiplying the

slope of the line by -2.3 as follows:

K = -2.3(slope) (3)

The specific degassing rate constants (K) were determined by

Equation (3).

VIII-6



l

Inspection of the figures shows that, in most cases, the

degassing of N204 from the elastomer shows the curves have

two slopes which means there is a change in the degassing
rate. The break in the cu_e ......11_ _LL "_^'_U_=_y occurred _- two

hours, and evaluating (K) shows the degassing rate was

considerably reduced after this time. The degassing rate

constants (K) are summarized in Tables 2-XV and 2-XVI for

N204 and A-50, respectively.

It was anticipated that the specific degassing rate constant

would be an excellent way to compare solvents. The order of

magnitude of the specific rate constants was found to be
about the same for all solvents and also for GNo at the same

conditions. This means that the rate that contaminants come

out of the elastomers is independent of the environment at

room temperature. Since this phenomenon was observed, other

variables that might affect the rate constant were considered.

The variable that was most obvious was temperature since a

slight change (increase) can sometimes double the rate of a

reaction. Therefore, one test was made at 65 ° C to det_%rmine

if this affected the degassing rate of N204 from Teflo*i-_FEP.

The results show that the specific degassing rate (K) was

2.3 times faster at the higher temperature.

The degassing rate constant (K) also provides a means of

estimating the contaminant concentration at any time if

the area of the exposed elastomers is known. This can be

done by multiplying (K) by the concentration at time (t)

and this value is multiplied by the area of exposed elas-

tomers. The concentration at time (t) is obtained from the

figures. The value from the above calculations would be

divided by the weight of the nitrogen in the system to

estimate the concentration of contaminant in the entire

system which could be stated in parts per million.

The degassing rate from the elastomers was described by

n_erical values of K. It may also be described by giving

the period of half life; that is, the time necessary for

half of the contaminant to diffuse from the elastomer.

This will give an indication of the time required for

decontamination. The half-life equation is derived by

substituting 1/2 into (2) as follows:

K - 2.303 log 1 _ 0.693
t½ ½ t½

Rearranging the above equation, the half life in a first-

order equation is then:

0.693 (4)
t½ = K



Thehalf-life determination provides a way to estimate the
time required to reduce the concentration of the contami-
nants in the elastomers to an acceptable level. The half-
life time values do not imply that all of ti_e contaminants
would be removedby doubling the time. The first-order
equation shows that the amount of degassing is proportional
to the amount present. To use an example, if the initial
concentration was 4.0 mg/cm2 and the half life was 60
minutes, in an hour the concentration would be 2.0 mg/cm2;
and, at the end of the second hour, the concentration would
be reduced to 1.0 mg/cm2.

I. Environmental and Temperature Effect

The results show that the rate the contaminants degas

from the elastomers is independent of its environment

at the same conditions. The degassing rate constants

(K),which are shown in Table _-XV, show, for the initial
degassing of N204 from Teflon_FEP, values of 1.4 x 10 -3 .

1.5 x 10 -3 , and 1.8 x 10 -3 in environments of GN2, Freon_

TF, and carbon tetrachloride. There is no significant

difference in the above values. The degassing of

Aerozine-50 from Stillman rubber at ambient conditions

in environments of GN 2 and methanol shows the rates were
approximately identical. The (K) value shown in

Table 2-XVl is 3.06 x 10 -4 for both the GN 2 and methanol.

The rate at which the contaminants degas is temperature-

dependent. An increase in temperature significantly

increases the degassing rate. The degassing of N204 from
Teflon_FEP shows K values of 1.4 x 10 -3 , 3.4 x i0 -o,

and I.I x 10-2 obtained from the tests using GN 2 purge

made at temperatures of 25 ° , 65°, and I00 ° C were plotted

on a semi-log graph and gave a reasonable fit. This means

that as the temperature is increased, the degassing rate

is increased exponentially. This is illustrated in

Figure 2-14.

Using Equation (4), the half _ife was determined for the

degassing of N204 from Teflon_FEP at temperatures of
o O o

25 C, 65 C, and i00 C. The above equation was also

used for determining the half life for the degassing of
Aerozine-50 from Stillman rubber. The results are shown

below:

Half Life N_O 4
Temperature From Teflon_FEP

oc Minutes

Half Life A-50 From

Stillman SR634-70,

Minutes

25 490

65 240

90

i00 63

119

2,260
295

70

36
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It is obvious from the above results that the degassing
rate of the contaminant from the elastomers is tempera-
ture dependent.

E. Allowable Concentration of A-50 in Cleanin_ Solvent

Two tests were made to determine the concentration of A-50 that

can be tolerated in the cleaning solvent and still effectively

remove the contaminant from the elastomer. The first test was

made using an A-50 concentration of approximately 9,000 ppm in

methanol, and the concentration of the second test was 90 ppm.

The procedure used was as follows: Three 500-ml round-bottomed

flasks, equipped with a heatingmmnt!e and reflux condenser,

were set up. Approximately 250 ml of the 9,000 ppm solution

were placed in each flask. Four specimens of Stillman

rubber which had been immersed in A-50 for several hours were

placed in the first flask. Four specimens of rubber which

had not been exposed to A-50 were placed in the second flask.

The third flask was used as a control with uncontaminated

solvent in it. After placing the specimens in the flasks,

heat was applied, and the temperature of the solutions was

raised to the boiling point. The solutions were boiled for

16 hours while maintaining total reflux. The specimens were

removed from the solutions after this time and weighed. The

A-50 content was determined for each flask. The rubber speci-

mens were then placed in the metal test chamber, and steam

was passed through the chamber for several hours. The exit

steam from the test chamber was discharged into a condenser

and the A-50 content of the condensate determined. The

specimens previously exposed to the A-50 and the specimens

which had not been exposed to the A-50 were steam-treated

separately.

The three different solutions (that which contained specimens

exposed to A-50, specimens not exposed to A-50, and the control)

show practically no difference in the A-50 concentration. This

indicates that the rubber is not selective for the fuel and

further substantiates the hypothesis that the propellants are

absorbed and not chemically adsorbed into the elastomers. Very

little A-50 was extracted by the steam treatment--approximately

two milligrams from the specimens preexposed to the A-50, and

about one milligram from the specimens not exposed to the A-50.

The test using 90 ppm A-50 in the methanol was carried out as

described above with the exception that the specimens were not

subjected to the steam treatment after they were refluxed.

The most significant results shown by this test were that most

A-50 contained in the preexposed specimens was extracted during

the 16 hours of boiling under reflux.

The major conclusion drawn from these tests is that the solvent

can tolerate several hundred parts per million of the contami-

nant and still effectively extract the contaminant from the

elastomer. More work should be done in this area.
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TABLE 2-111

RESULTS OF SOLVENT-ELASTOMER COMPATIBILITY STUDY

Solvents

Ethanol

Methanol

Acetone

90% Hexane

10% Aerozine-50

Aerozine-50

Freo_ll

90% Freon_l i

10% N204

AFreo 13

90% Freo_ll3

10% N204

Bromo-chloro Methane

90% Bromo-chloro Methane

10% N204

N204

Bromo-dichloro Methane

Tribromo-fluoro Methane

Elastomers

Teflo_ Teflo_ KeI-F

TFE FEP No. 300

i0 Wks 8 Wks I0 Wks

Compat Compat Compat

I0 Wks 8 Wks i0 Wks

Compat Compat Compat

i0 Wks 8 Wks I0 Wks

Compat Compat Compat

9 Wks No 9 Wks

Compat Test Compat

Kyna 

No Test

5 Wks

Compat

No Test

No Test

Rulon

5 Wks

Compat

5 Wks

Compat

No Test

Stillman

SR634-70

Rubber

5 Wks

Compat

5 Wks

Compat

i Wk

Failed

No Test No Test

9 Wks 8 Wks 3 Wks 5 Wks 5 Wks 5 Wks

Compat Compat Failed Compat Compat Failed

8 Wks 8 Wks 4 Wks 5 Wks. 5 Wks No Test

Compat Compat Compat Compat Compat

No Test

No Test

No Test

No Test

8 Wks 8 Wks i Wk

Compat Compat Failed

8 Wks 8 Wks 8 Wks

Compat Compat Failed

8 Wks 8 Wks I Wk

Compat Compat Failed

8 Wks 8 Wks 8 Wks

Compat Compat Compat

No 8 Wks No

Test Compat Test

No Test

No Test No Test

No Test No Test

No Test No Test

No Test No Test

No Test No Test

8 Wks 8 Wks i Wk 5 Wks 5 Wks No Test

Compat Compat Failed Compat Compat

4 Wks 4 Wks No 4 Wks 4 Wks i Wk

Compat Compat Test Compat Compat Failed

4 Wks 4 Wks No 4 Wks 4 Wks I Wk

Compat Compat Test Compat Compat Failed
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TABLE2-111
(CONTINUED)

Solvents

i,i Dibromo-2 ,2 ,2 trifluoro

Ethane

2,2-Dichloro- i, l-dif luoro

Ethyl Methyl Ether

Carbon Te trachloride

Isopropyl Alcohol

Elastomers

Teflo_ Teflo_ KeI-F

TFE FEP No. 300

4 Wks 4 Wks No

Compat Compat Test

No No No

Test Test Test

No No No

Test Test Test

No No No

Test Test Test

K__nar

4 Wks

Compat

i Wk

Compat

No Test

No Test

Rulon

4 Wks

Compat

No Test

I Wk

Compat

No Test

Cyclohexane No No No

Test Test Test

No Test No Test

Iso-Octane No No No

Test Test Test

No Test No Test

Benzene No No No

Test Test Test

No Test No Test

Suillman

S_o_-7_

Rubber

! Wk

Failed

i Wk

F- "led

No

Test

! Wk

Failed

i Wk

Failed

i Wk

Failed
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REMOVALOF

TABLE2-IV

N204FROMTEFLON_FEPIN VARIOUSSOLVENTS

Freon_M_ Freo_TF Carbon Tetrach!oride

N204 % N204 N204 % N204 N204 % N204
Tim__e _2 Retained m_/cm2 R@tained _ Retained

0 0.89 - 2.11 - 2.57 -

15 min. 0.829 93.2 1.967 93.1 2.35 91.4

30 min. 0.828 93.1 1.925 91.2 2 28 88.7

60 min. 0.801 90.0 1.832 86.8 2.145 83.3

120 min. 0.78 87.6 1.74 82.4 2.08 80.5

240 min. 0.721 80.9 1.64 75.7 1.97 76.6

24 hrs. - - 1.267 60.0 1.31 51.0

REMOVAL OF

TABLE 2-V

N204 FROM TEFLON_TFE IN VARIOUS SOLVENTS

Fre°n_MF Freon_TF Carbon Tetrachloride

N204 % N204 N204 % N204 N204 % N204
Tim___e m____2 Retained m_/cm2 Retained m_/cm2 Retained

0 2.44 - 1.65 - 2.6 -

15 rain. 2.23 91.3 1.34 81.0 2.18 83.9

30 min. 2.18 89.2 1.45 88.0 2.15 83.7

60 min. 2.12 87.0 1.315 79.8 2.01 77.4

120 min. 1.97 80.6 1.26 76.3 1.82 70.0

240 min. 1.81 74.2 1.144 69.3 1.49 57.4

24 hrs. 1.67 68.4 0.895 54.3 1.195 45.8
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Time

0

20 rain.

30 rain.

40 min.

1.0 hr.

i. 33 hrs.

2.0 hrs.

2.75 hrs.

6.33 hrs.

19.0 hrs.

24.0 hrs.

REMOVAL

TABLE 2-V!II

OF N204 FROM ELASTOMERS, PURGING WITH GN2

Teflo_ FEP Teflo_ FEP Teflon _ TFE

Ambient 65 ° C 65 ° C

% N204 % N204

Retained mg/cm 2 Retained

5.345

4.19 78.4

2. 060

1.481 70.1

1.385 67.2

1.230 59.7

1.055 51.2

.710 34.4

3.94 73.6

3.61 67.5

2.94 55.0

.785 14.6

.524 9.8

mg/cm 2

2.A4

% N204
Retained

1.467 59.8

1.3 53.2

1.04 42.6

.743 30.2

.275 11.3

TABLE 2-1X

REMOVAL OF N204 FROM TEFLO_ITE AND FEP

AT A TEMPERATURE OF I00 ° C USING GN 2

TFE FEP

Time N204 % N204 N204 % N204

Min. mg/cm 2 Re tained mg/cm 2 Re tained

0 i. 77 - 5.39 -

30 0.44 24.8 2.62 48.6

60 0.34 19.2 i.85 34.3

90 0.27 15.2 1.28 23.7
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TABLE2-X

REMOVALOFAEROZINE-50FROMSTILLM_NSR634-70RUBBER
USINGVARIOUSSOLVENTS

Iso-Octane Benzene Formamide

Time A-50 % A-50 A-50 % A-50 A-50 % A-50

Min. m_/cm 2 Retained _ Retained mg/cm 2. Retained

0 4.14 - 3.98 - 5. ii -

30 3.98 96.0 2.45 61.4 5. i0 99.7

60 3.89 94.0 2.16 54.2 5.09 99.6

120 3.68 88.9 2. i 52.7 5.07 99.3

180 3.35 80.9 2.7 67.8 5.05 98.9

TABLE 2-Xl

REMOVAL OF AEROZINE-50 FROM STILLMAN SR634-70 RUBBER

USING METHANOL AND WATER.

Methanol Water

Time A-50 % A-50 A-50 % A-50

Min__.___ m_/cm 2 Retained mg/cm 2 Retained

0 7.42 - 7.55 -

30 7.3 98.3 7.35 97.4

60 7.23 97.4 7.30 96.7

90 7.16 96.4 7.29 96.5

120 7.10 95.7 7.24 95.9

180 7.01 94.4 7.17 95.0

210 6.95 93.7 7.17 95.0

240 7.17 95.0
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TABLE2-XII

REMOVALOFAEROZINE-50FROMSTILLMANSR634-70RUBBER
USINGGN2 PhaGEAT 25° AND90° C

25° C 90 ° C

Time A-50 % A-50 Time A-50 % A-50

Min. m_/cm 2 Retained Min___:.. mg/cm 2 Retained

0 7.21 - 0 6.34 -

30 7.13 98.8 I0 3.61 56.9

60 7.04 97.5 20 2.31 36.6

90 6.98 96.8 40 1.28 20.2

120 6.92 95.9 60 1.07 16.9

180 6.82 94.6 80 0.861 13.6

210 6.77 93.9 24 hrs. 0.0 0

240 6.71 93.1

TABLE 2-Xlll

REMOVAL OF AEROZINE-50 FROM STILL>5%N SR634-70 RUBBER

USING METHANOL AND ISOBUTANOL VAPORS AT 65 ° AND i00 ° C

Methanol Vapors Isobutanol Vanors

Time A-50 % A-50 A-50 % A-50

Min. mg/cm 2 Retained mg/cm 2 Retained

0 7.38 - 7.89 -

30 6.68 90.4 7.24 86.3

60 6.08 82.3 6.17 73.5

90 5.66 76.7 5.34 63.7

120 5.28 72.5 5.14 61.2

150 4.96 67.1 4.52 53.9

180 4.69 63.5 3.84 45.7

210 4.5 60.9 3.58 42.6

240 2.44 60.2 3.48 41.5
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R_MOVAL OF

TABLE 2-XIV

AEROZINE-50 FROM STiLLMAN SR634-70 RUBBER

USING 13 PSIG STEAM AT 119 ° C

Time A-50 % A-50

Min. m_/cm 2 Retained

0 5.97

5.3 5.26 88.0

12.2 4.24 71.3

20.0 3.48 68.2

27.8 2.9 48.5

35.6 2.46 41.1

43.4 2. I 35. i

51.2 1.81 30.3

59.0 1.58 26.4

66.8 1.37 22.9

74.6 1.2 20.1

82.4 i.06 17.7

90.2 0.94 15.7

98.0 0.82 13.7

105.8 0.72 12. i

113.6 0.61 i0.3

121.4 0.53 8.9

128.4 0.45 7.5

i36.2 0.39 6.5

145.0 0.33 5.5

152.8 0.28 4.7

160.6 0.23 3.8

168.4 0.19 3.2

H20 Trap 2.5
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TABLE 2-XVI

DEGASSING RATE CONSTANTS K FOR AEROZINE-50

FROM STILLM_N SR634-7_RUBBER

AND FOR N204 FROM TEFLONgmFEP AND TFE

GN2

Ambient

Methanol

Ambient

Methanol KSI

65 ° C (Vapor) KSII

Steam KSI

13 psig KSII

GN2 KSI

90 ° C KSII

Isobutanol

I00 ° C (Vapor)

Iso-octane

Ambient

GN 2 K

i00 ° C

Stillman

SR634-70 Teflo_ Teflo_

Rubber FEP TFE

3.06 x 10 -4

3.06 x 10 -4

3.07 x 10 -3

2.34 x 10 -3

2.7 x 10 -2

1.91 x 10 -2

3.51 x 10 -2

9.84 x 10 -3

3.78 x 10-3

9.26 x 10-4

i.i x 10 -2 9.2 x 10 -3
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Aerozine-50 is a stable liquid under the extremes of

heat and cold expected in storage. Upon freezing, the

mixture contracts in volume. Thermal decomposition of

N2H 4 begins at about 320 ° F; b_ is stable up to about

700 ° F. The fuel blend is not shock sensitive, but the

vapors are flammable over a wide range of concentrations.

A mixture of these vapors with air can be detonated by a

small spark. Furthermore, some metals such as copper,

molybdenum, or iron oxide will catalyze decomposition at

room temperature.

Studies of the liquid-vapor equilibrium have revealed

no azeotropic mixtures.(_9) The two co_@onents of A-50

interact endoChermically on mixing. Supercooling and

freezing point depressant data on No}{, is reported by
,18 _ _

Leonard. _ J Decomposition kinetics of N2H 4 were studied
by McHale (25) who reported a simple non-chain reaction and

proposes several possible mechanisms.

Tables 4-I to 4-VII and Figures 4-1 to 4-7 summarize the

more important physical properties of the fuel blend and

also give some of the outstanding properties of the individual

components.

b. Hazards and Toxicity

The fuel blend is toxic by inhalation, ingestion, or by

skin contact.

The vapors cause local irritation to the respiratory tract

and to the eyes. Prolonged contact or high concentration

of the fuel blend vapors cause pulmonary edema in the

respiratory system. UDMH vapor is mildly irritating to the

skin and eyes and will penetrate the tissue to cause systemic

toxicity. In this respect, hydrazine is less dangerous but

will produce an alkali-like burn or necrosis of the skin.

Short exposure to the vapor results in attack on the central

nervous system causing hypernea and convulsions. Longer

explosure may cause death.(2) The concentrations of vapors

which are hazardous to the eyes are not necessarily high

enough to cause attack on other areas. Prolonged eye contact

with hydrazine vapors will cause the eyes to become swollen

and inflamed and can cause temporary loss of sight. In some

instances, the blindness lasts for about three days, but,

within a week, full recovery usually occurs.

The allowable concentration (MAC) in air of N2H 4 is i ppm
and 0.5 ppm for UDMB for an 8-hour day. (19) Personnel

suffering from over exposure to vapors should be immediately

removed to an uncontaminated atmosphere an@4_Pt as quiet
as possible while administering first aid. _ J Liquid

hydrazine will cause permanent blindness if first aid is not

rendered immediately.(12)
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Patrick and Black (31) give detailed description of the
pathological and toxic effects on monkeysand rats of small
repeated doses of the fuel components. Weir et al (43)
discussed the mechanismof acute toxic effects of UDM}I.
If the fuel blend should come in contact with the skin, the
contaminated clothes should be removed immediately and the
exposed area washed thoroughly with large quantities of
water while medical attention is summoned. Eyes exposed to
liquid A-50 should be immediately rinsed with clean water
for 15 minutes during which time proper medical help, pre-
ferably an ophthalmologist, is summoned.

2. Nitrogen Tetroxide

a. Properties and Reactions

Nitrogen tetroxide is a heavy liquid which boils near

room temperature (70.07 ° F). The liquid is an equilibrium

mixture of about 85% N204 with 15% N02 at 68 ° F. The presence

of the N02 gives the liquid its characteristic dark brown

color, but as the temperature is lowered, the equilibrium

favors less N02 and thus the solutions approach a pale yellow

color.(27) N204 is normally handled as a gas. If the N204

falls within the specifications shown in Table 4-VIII where

water content is 0.1% or less, storage in most steel containers

is practicable. (30)

Nitrogen tetroxide is a very strong, corrosive oxidizing agent

and extremely poisonous. It is hypergolic with UDF[H, N2H4,
aniline, furfuryl, alcohol, and many other combustible compounds. (I)

With sufficient shock, N204 can be detonated with certain

chloronated hydrocarbons and many other compounds not normally

thought to be explosive. (23) N204 is not sensitive to mechanical

shock or heat, but above 302 ° F free oxygen is dissociated. On

cooling, the free oxygen recombines to form N$0_. It is non-
flammable but will easily support combustion._lJ

N204 is soluble in water and reacts with water to form nitric

and nitrous acids (N204 + H20 _ HN03 + HNO2). The nitrous

acid undergoes further decomposition (3HNO 2 --_ HNO 3 + 2NO_ +

H20). NO is sparingly soluble but may undergo oxidation

(2NO + 02----> 2NO2).(34) A report by Coon and Streib (13) on

the dissociation of N204 and its products indicates that the

dissociation cannot be correctly calculated from pressure

data at elevated temperature.

The properties of N204 are shown in Tables 4-VIII through

4-XIV and Figures 4-8 through 4-14.
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b. Hazards and Toxicity

The effects of liquid N204 are similar to those of 70%

I_03; brief exposure causes yellowing of the skin; severe
burns result from longer contact. If the liquid is splashed

into the eyes, blindness is likely to occur. If taken

internally, severe burns result in death. (21)

The vapor phase above liquid N204 is primarily N02. Vapor

contact with skin is less harmful than liquid for a given

exposure time. The vapor will cause a stinging sensation to the

exposed area. The most serious problem in handling N204 is

probably vapor ie_a!ation, and it is possible for harmful con-

centrations to be undetected by exposed personnel. Pulmonary

edema or the reduction in the ability of the lungs to carry out

oxygen exchange may then occur. The lag in time for symptoms to

develop may complicate the effect of pulmonary edema because
exposed personnel may continue with accustomed physical exertion. (35)

The threshold limit value (MAC) is given as 5 ppm for NO 2 and

as 2.5 ppm for N204. Dr. Silverman_20) of the Harvard Medical

School of Public Health, suggested that the MAC value can be

exceeded safely by a factor of 5 for a 10-minute period.
Dr. E. C. Wortz (45) also did similar work and concurred with

Dr. Silverman's findings.

The initial symptoms, after exposure to N204, are irritation

of the eyes and throat, cough, tightness of the chest and nausea.

These first symptoms are slight but, several hours later, coughing,

constriction of the chest, and very difficult breathing occurs.

Cyanosis, a blue tinge to the mucous membranes of the mouth,

eyelids, lips, and fingernails, may follow. A person at this

stage is in great danger. Repeated exposure to the fumes may
lead to ulceration of the mouth and nose and to decay of the

teeth. Chronic irritation can occur to the entire respiratory

tract complicated by bronchitis, bronchiectasis, or secondary
r m h sema (28)pulmona y e p y

Liquid N204 spills on the skin should immediately be washed

with copious quantities of water. For N204 splashed into the

eyes, immediate flushing with clean water is mandatory. If

a choice should exist as to flushing the eyes or calling a

physician, the eyes must be flushed first for at least i0

minutes, keeping the victim's eyes open. After this, call

for assistance at the first opportunity but continue the eye

washing. A person exposed to the vapors should be removed to
an uncontaminated atmosphere and proper first aid administered. (35)

E. Propellant Storage and Handlin_

The high energy content and toxicity of the propellants require

careful design and special precautions for storage and handling.

The fuel and oxidizer must be isolated from each other and also from

any incompatible substances or environment.
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The fuel and oxidant are stored in closed systems under nitrogen pads.

The fuel blend necessitates a pad to reduce fire and vapor explosion

hazards. (28) The oxidizer requires a pad to maintain a positive pressure

over the liquid to suppress the dissociation to N02. The N204 storage
system should be provided with a water sprinkler system to serve as a

coolant on warm days.(35) If the propellant tanks are exposed to

temperatures below freezing, a heating system may be required. The

propellants contract in volume on freezing, thus eliminating expansion

problems associated with water.

The vessels and connecting lines of the storage facilities should be

welded where possible and should com_l_ with the ASME Boiler and

Pressure Vessel code specifications._J) The N204 vessels must

withstand at least 150 psia, with rupture discs set for 75 psia, and

an automatic relief valve set for a lower pressure. All vents and

relief valves should pass through water scrubbers.(28)

The in_nediate and surrounding area of storage facilities should be

free of all organics and kept as meticulously clean as possible.

Cotton lint, sawdust, rags, or any other material of this nature

will be spontaneously ignited by absorption of fuel vapors. The

storage area should be diked in some manner to contain spills. All

buildings and materials of support should be fireproof and designed
for a corrosive atmosphere.

All vessels and lines must be adequately grounded. Electric motors

and el_rical control systems should be installed under the NFPA
No. 70 _ j explosion-proof code to eliminate any possibility of vapor
contact.

Pumps used in the system should be the self-priming type, preferably

centrifugal. Any other pumps should be of a design to eliminate

contamination of the propellant by moisture. The pump should be of

the type needin_ no seal or one with a seal that is compatible with

the propellant. _28)

Water outlets should be strategically located in the storage area

and be of sufficient size to handle fires and spills. A wind

direction marker and an evacuation signal horn are needed to aid

in safe evacuation. Safety shower and eye wash baths should be

conveniently located. The personnel should be thoroughly educated

and familiarized with the hazards of the propellants and the problems

they may create.(28) Self aid and first aid procedures must be

established for all possible types of exposure.

Spills of propellants always present a very serious hazard.

Decontamination of N204 spills is best accomplished by a water

spray. The spray knocks down the vapors and contains them along

with a liquid. No advantage results from using water containing

additives. Decontamination of fuel blend spills was also affected

by a fine water spray. The vapors should be rapidly diluted with

water spray to diminish a possible fire hazard. If a fire does

develop, dry chemicals and foam are most effective as extinguishers.

Water is the best material for disposing of an A-50 spill since the

contaminant can be fl_d down the drain and the fire hazard is
considerably reduced. _j
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F. Compatibility of Propellants with Materials of Construction

The materials of construction that are satisfactory for N2H 4
service are also acceptable for UDMH.(19) Some materials such as

iron, molybdenum, or copper oxides, should not be used since they

catalyze the decomposition of N2H 4. At 290 ° F, N2H 4 violently

decomposes whereas UDMH is stable up to 700 ° F in the presence of

the above materials. Oxides of iron, lead, magnesium, and molyb-

denum may cause ignition of N2H 4 vapors.

Most alloys are compatible with the fuel blend. The naturally

occurring oxide surface that forms on aluminum protects it from

corrosive attack. The surfaces should be .... _,,lly cleaned, after

fabrication, to remove contaminants such as welding slag. Any such

foreign substances contaminating the system may initiate corrosion.

The aluminum alloys are highly resistant to corrosion in the pH

range of A-50, and prolonged exposure does not affect the mechanical

properties. Alloys such as 2014-T6, 5254-f, 6061-T6, and 356

tested at 160 ° F for 90 days in contact with A-50 containing up

to 16% H20 showed only a slight stain in the metal above the liquid
line.(6)

Stainless steel is unaffected by A-50. However, most alloys must

be acid-pickled prior to use in order to prevent stains and minor

deposits. Molybdenum-bearing stainless steel alloys do not form
• - (19)deposits, but their use is not usually recommenaea. Only 316,

17-4PH, and AM355 Cond-H alloys gave satisfactory results when

exposed to the blend at 160 ° F for 90 days, showing only slight

staining above the liquid line and having no deposits. (6)

Ferrous alloys can be used in systems where oxygen and moisture

can be eliminated and if the temperature is maintained below 160 ° .

However, the ferrous alloys are not recommended because the possible
formation of iron oxide. (19)

Nickel alloys and certain cobalt alloys, such as Haynes Stellite 25,

exhibit good resistance to the fuel at low moisture levels. Titanium

alloys such as CI20AV show excellent resistance to the fuel blend

containing up to 16% water.

Magnesium alloys show poor resistance to corrosion. Alloys of

copper show good resistance, but the possible adverse effect of their

oxides limit their use.

Platings such as cadmium, silver, non-porous chromium, and nickel

are satisfactory for fuel blend use. Gold-plated Berylco 25 is also

satisfactory but discolors during contact.(19)

The fuel blend is a strong solvent as well as a powerful reducing

agent. It will attack, dissolve, or react With many of the substances

that normally constitute gaskets and seats. The soft parts must show

resistance to attack and still retain a volume range of _+0 to +25% and

less than a 3% durability change. Also, the soft parts must have no

effect on the propellant and show no change on visual examination.
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In most instances, the preservation of sealing characteristics
and resilience may be given more weight than changes in physical
properties.(19)

Teflon_and Teflo_products are the most resistant to chemical
attack%by the fuel blend. But, in contrast to its good resistance,
Teflont_as gasket material has several disadvantages. Probably the
most serious of these is propellant absorption and subsequent slow
degassing. This effect mayappear as a slight le_ around the seal
or maydelay decontamination of the part. Teflo_eVhas limited reuse
since it lacks resilience. (19)

Certain nylons and polyethylenes show satisfactory chemical resistance,
but only for a limited time or temperature, such as 30 days or 60° F.
KeI-F 300 is also restricted to use of 70 days at room temperature, or
30 days at 160° F, after which it becomesbrittle. (6)

Of the elastomers, certain butyl rubbers showedthe best resistance
to chemical attack. Parker XB800-71and B496-7 performed well in
tests at 160° F for 30 days with less than 15%loss of tensile
strength. Parco 823-70 and Precision Rubber 9257 and 9357 softened
from 13 to 20%when tested at 70-80° F for 50 days. Other butyl
rubbers exhibited lesser degrees of resistance to the fuel blend,
but most showedespecially good resistance to aging. Fluorosilicons
and fluororubber generally showedpoorer resistance to the fuel but
better resistance to solvents and heat. (19)

The only lubricant or sealant which significantly resisted washing
out was Microseal i00-I. UDM}Iproved to be very satisfactory for
use in contact with 0-rings.

Table 4-XVI illustrates the behavior of construction materials
on prolonged contact with the fuel blend.

The metal for N204 service is more limited by the water content
of the oxidizer than the fuel blend.

Carbon steels, aluminums, stainless steel, nickel, and Inconel
are suitable for N204 service where the moisture content is
0.i percent or less. Only stainless steel of the 300 series and
titanium exhibit adequate corrosion resistance at high moisture
content for long-term service. Metals such as brass, bronze,
cadmium,copper, lead, magnesium,silver, and zinc or their
alloys should be avoided for use with N204.(19)

Titanium and several of its alloys such as Ti 65A are satisfactory
for use with N204.(19)

Cobalt alloys, Haynes Stellite No. 6K and 25, and certain nickel
alloys are acceptable for use under anhydrous conditions. Only
a few elastomers are compatible with N204. It can dissolve, degrade,
decompose,or even completely destroy the substance. Certain com-
ponents in the soft parts can be extracted, causing drastic changes
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in physical properties. In fact, only one material, Teflo_/, was found

to resist attack sufficiently for long-term service. (19)

The inadequacies of suitable elastomers for N204 service can be

further illust_ted by recent research on this problem. Work with
filled Teflon_LS/and certain polyethylene-encapsulated elastomers

(22)has been successful only for short-term exposures. Gamma

radiation curing techniques have been tried with several elastomers

to increase their resistance.(1) Very recently, a carboxy nitroso

rubber has been developed as an elastomer highly resistant to N204.

Tests on this rubber after immersion in N_0& for 90 days at 165 ° F

showed no change in mechanical properties_(17)

(_R"
Teflon_c_, filled with _aphite, molydisulfide, asbestos, or

impregnated with Teflo_fibers, usually provide adequate services
in N204 if moisture content is less than 0.10%.(22) Both Teflo_

TFE and FEP soften at higher moisture concentrations. (19) Formula 53

(polyethylene with isobutylene) shows good strength resistance but

undergoes swelling of about 19%.(39)

Only three lubricants-Molykote Z, Drilube 703, and Electrofilm 66C

were found to be satisfactory.(22) Water glass graphite, Reddylube

I00 and 200. and N204 sealant were satisfactory for thread sealant
service.(19)

The behavior of construction materials in contact with N204 is given
in Table XVII.

G. Detection and Analysis

The published literature includes many articles on the detection

and analysis of N204 and the hydrazines. Detection of the presence

of propellant materials is of prime interest in work areas where

contamination of the atmosphere is possible. Analysis of the

respective propellants for impurities such as moisture and parti-

culate solids is important to the proper functioning of the propellant

system.

I. Detection

The maximum allowable concentration in the atmosphere for an

8-hour day is 0.5 ppm for the fuel blend and 5 ppm for N204.
The atmosphere in work areas exposed to possible contamination

by the propellant components must be accurately monitored for

propellant vapors in order to detect immediately an increase to

greater than allowable concentration.

Vapor phase chromatography has been used for detection of pro-

pellants. An instrument equipped with a i/8-inch by 3-foot glass

column packed with 15% SE oil on Gas Chrom Z at 60 ° was used with

a flame ionization detector. Successful detection of 0.5 ppm

UDMH in air was accomplished. An electron capture detector used

with the vapor phase chromatograph had similar sensitivity, but

reaction to atmospheric oxygen or traces of other impurties

yielded less reliable results. (33)
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A very simple and inexpensive method for atmospheric detection

of fuel vapor down to 0.5 ppm has been used. This method is

colorimetric in nature and uses paradimethyl aminobenzaldehyde

absorbed on paper as the coloring agent. Measured volumes of

air are pumped through the paper. If fuel vapors are present in

the air, the paper will turn yellow. The degree of color can be

matched against standards and concentrations down to 0.5 ppm can

be determined. This method has the limitation that concentrations

of chlorine above 5 ppm and ammonia above 50 ppm interfere. (37)

More sophisticated detection instruments are available for air

contaminants. The M.S.A. Billion-Aire instrument manufacturers

claim detection down to the ppb range. It uses a relatively

complex ionization chamber in which the contaminant is reacted

to form a solid. This reaction constitutes a sensitization

whereby the desired physical changes are correlated to con-

centration levels. Hydrazine is detected in the 0-50 ppb

range, UDMH in the low ppm, and N02 in the 0-I0 ppm range

according to claims by the manufacturer. (38)

Other means of detection utilize air contaminant impingement

on chemically treated tapes or into liquid scrubbing solutions.

This type of detection departs from rapid, simple atmospheric

monitoring in that the information read-out occurs after analysis

by conventional methods.

Analys is

Simple methods may be needed to determine the purity of the

propellants. Weight percent N204 can be determined in the
following manner:

A 1.5 gram sample of N204 is carefully collected in a

sealed tube and accurately weighed. One hundred milliliters

of 3% H202 are added to a 500-milliliter flask in a nitrogen

atmosphere. The sealed ampoule of N204 is carefully inserted

into the flask and broken below the liquid surface. The

solution is diluted to 240 milliliters and chilled to freezing

with constant shaking, then allowed to come to room temperature.

The solution is next titrated with 0.5 N NaOH along with a

blank, and appropriate calculation made. (I0)

The nitrosyl chloride content of the N204 can also be simply

determined.

A portion of the 250-milliliter solution prepared as mentioned

above is titrated for chloride ion by the standard AgN03

titration method.

A non-volatile ash determination can be made as follows:

A weighed sample collected in the manner described above is

placed in a prepared 100-milliliter platinum evaporating dish.
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After evaporation, the dish is heated in a muffle furnace for
30 minutes at 2,000° F. The dish is cooled, desiccated, carefully
reweighed, and the percent non-volatile ash is calculated.(I0)

The composition of the fuel blend can also be determined:

A difference in reaction rates for acetylation of hydrazines

cau be used to determine the weight percent of the constituent

in the blend. Acetylation of hydrazine occurs very rapidly

while the UDMH reaction proceeds slowly. Two titrations are

made. The first determines the total basicity of N2H 4. The

second measures UDMH after N2H 4 has reacted with acetic anhydride.

The amount of water and impurities can be determined by sub-
tracting the sum of these two values from i00. (I0)

Gas chromatography is the most convenient method for analysis

of water content present in the range of specification given for
fuel blend.

A column of Fluoropak-80 coated with 20% Ucon Oil 550X gave

very reproducible results. Water content in hydrazine in

concentrations from 0.5 to 2.0 weight percent was accurately
determined.(15)

The Karl Fisher method of water detection is accurate to very

low concentrations. However, this method cannot be applied to
detection of water in the oxidizer.(I0)

To determine moisture content in a propellant tank after cleaning,

an instrument such as the dew-pointer can be used. This instru-

ment is valuable in detecting trace amounts of moisture and other

vapor contaminants.

For the detection of particulate matter, various filters can be

used to entrap the matter. The size and number per unit area can

be determined by microscopic examination or the total level may

be determined by weight gain during passage of a measured volume

of gas. Elaborate electronic counting instruments are also

available to quickly obtain the same information.

Many other methods of analysis are readily available in the

published literature. A useful catalog of infrared spectra

covering rocket fuels and products of combustion in vapor and

liquid combination has been prepared. This type of analysis is

useful in any application where a wide variety of products are
to be identified and measured. (32)
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H. Tables

TABLE 4-I

PROPELLAk_ SPECIFICATION - 50/50 FUEL BLEND*

Chemical Requirements

UDMH

N2H4

Total N2H4 and UDMH

H20 and Other Soluble Impurities

Specification

(Wt. %)

47.0 (rain.)

51.0 t o.8

98.2 (min.)

1.8 (max.)

(Reference 7)

*The above specifications define the fuel Aerozine-50

and apply in all instances of reference.
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TABLE 4-11

PHYSICAL PROPERTIES

50/50 Fuel Blend

Molecular Weight (Avg.)

Melting Point*

Boiling Point

Physical State

Density of Liquid at 77°F. - - -

Viscosity of Liquid at 77°F. - -

Vapor Pressure at 77°F.
Critical Temperature (calc.) - -

Critical Pressure (calc.)

Heat of Vaporization (calc.) - -

Heat of Formation at 77°F. (calc_

Specific Heat at 77°F. (calc.) -

Thermal Conductivity at 77°F. - -

(oalo.) - -
(Reference I)

Hydrazine

Molecular Weight

Melting Point

Boiling Point
Density at 68°F.

Critical Pressure

Critical Temperature

Flash Point (open cup)

(Reference 9)

Unsymmetrical Dimethyl Hydrazine

Molecular Weight

Melting Point

Boiling Point

Density at 68°F.
Critical Temperature

Critical Pressure

Flash Point (closed cup)

(Reference 9)

45.0
18.8°F.

158.2 °F.

Colorless Liquid

56.1 lb./ft.3

54.9 x I0 -s Ib./ft-sec.

2 7= psia,fj

634°F.

1696 psia.

425.8 BTU/Ib.

527.6 BTU/Ib.

0.694 BTU/Ib- °F •

0.151BTU/ft-hr -°F.

32

35°F.

236°F.

8.48 Ib/gal.
2120 psig.

716 °F.
I00-126°F.

6O

71°F.
146°F.

6.6 ib/gal.
4800F.

865 pslg.

3°F.

*Mixtures complying to specifications in Table 4-1.
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TABLE 4-III

DISTILLATION RANGE OF THE 50/50 FUEL BLE_YD

Blend Composition by Wei6ht %

UDMH 48.7

N2H4 50.4

H20 + impurities 0.9

Temperature Volume %

(°F) (Distilled) Distillate Analyses*

149.0 First Drop Distilled

158.o lO 86.o% UD_H, 8.o% N2H4

161.6 20 85.0% UDMH, 9.0% N2H4

167.o 30 -

170.6 40 -

194.0 50 79.0% UDMH, 15.0% N2H_

233.6 60 -

235.4 70 -

235.4 80 100% NaH4

239.0 90 95% N2H4

(Reference 6)

*Analysis done spectrally with calibration curves for
UDMH and N2H4 concentration range of 45 to 55% by

weight.
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VAPOR PRESSURE

Tempe rature

(°F)
14.0

e3 .o

32.0

68.0

77.0

85.3

86 .o

104.0

108.9

122.0

135.3

140.0

159.8

TABLE 4-IV

OF 50/50 FUEL BLEND

Vapor Pressure

(Psia)

0.55

0.71

0.92

2.09

2.75

3.08

3.42

5.O0

5.30

7.30

9.29

Io.5o

15.1o

AT 46% ULLAGE

Reference

No.

1

1

1

1

1

7

1

1

7

1

7

1

1
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TABLE 4-V

SOLUBILITY OF VARIOUS GASES IN 50/50 FUEL BLEND

Pressurizing Temperature Solubility Final Gas

Gas (°F) (Wt %) Pressure (Psla)

Nit rogen 70.0 <0. O1 86.0

32.0 <0.01 79.4

Helium 71.5 0.012 +- 0.008 63.6

33.0 <0.008 60.7

Ammonia 57.5 0.26 +- 0.01 38.0

70.0 0.25 +- 0.01 44.4

(References 6 and 8)

TABLE 4-VI

HEAT CAPACITY OF 50/50 FUEL BLEND

(Calculated by AeroJet-General)

Temperature

(°F)

21

35
63

81
99

135
153
25o
35o
42O

Heat Capacity

(BTU/Lb- °F)
T

o .68o
0.684
0.692

0.696

o.7o2
0.709

0.715

0.743

0.780
0.814

(Reference 7)
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TABLE 4-VII

FLASH AND FIRE POINTS OF 50/50 FUEL BLEND

WITH VARIOUS WATER DILUTIONS

(Using a Modified Cleveland 0pen-Cup Tester)

Ha0 in Fuel Blend Flash Point Fire Point

(Vol._) (oF.) (oF.)

Undiluted 38 38

I0 4o 4o

20 35 35

5o llO 125

60 16o 16o

65 180 200

75 >212 >212
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TABLE 4-Vlll

PROPELLANTSPECIFICATION* - Ne04

Chemical Requirements Specification
(Wt. %)

Ne04 Assay 99.5 (min)

H20 Equivalent 0.I (max)

Chloride as NOC1 0.06 (max)

Non-Volatile Ash 0.01 (max)

*Taken from MiI-P-26539 specifications (USAF) 18 July 1960
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TABLE 4-1X

PHYSICAL PROPERTIES OF N204

Empirical Formula

Structural Formula

Molecular Weight

Physical State

Melting Point

Boiling Point

Heat Formation at 77°F.

(Liquid)

Vapor Pressure at 77°F.

Viscosity at 77°F.

Density at 77°F.

Heat Capacity at 70°F.

Critical Temperature

Critical Pressure

Thermal Conductivity at

40°F. and 200 psia.

Heat Vaporization

Heat of Fusion

N204= 2N02

0 0

N--N

0 0

92.016

Red-brown liquid

II.84°F.

70.07°F.

-87.62 BTU/Ib.

17.7 psia.

0.0002796 Ib/ft-sec.

0.410 centipoise

89.34 Ib/ft s

0.370 BTU/Ib- °F.

316.8°F.

1469 psia.

0.0812 BTU/ft-hr- °F.

178 BTU/Ib.

68.4 BTU/Ib.

(Reference 27)

A
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EQUILIBRIUM VALUES

TABLE 4-X

- PERCENT DISSOCIATION

Na0, --_ 2N0e

OF Na04

Temperature

(°F)

68

io4

14o

176

212

Pressure

(psla)

7.4 14.7. 29.4

19.5 15.8 7.2

38.7 31.0 15.1

66.o 50.4 28.2

85.o 73.8 46.7

93.7 88.o 66.5

(Reference 27)
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TABLE 4-XI

VAPOR PRESSURE OF N204

Vapor Vapor

Temperature Pressure Temperature Pressure

.....(°F) (psia) (°F) (psla)

11.8 2.70 180 163.29

14 2.90 190 196.35

32 5.o8 2oo 235.Ol

50 8.56 210 281.56

68 13.92 220 332.8

70 14.78 230 393.2

80 18.98 240 463.3

90 24.21 250 543.9

I00 30.69 260 636.3

II0 38.62 270 732.6

120 _8.24 280 864.1

130 59.98 29o 10o0.5

140 74.12 300 1160.1

150 91.06 310 1336.5 a

160 111.24 316.8 b 1469.0 a

170 135.14

a - Value extrapolated.

b - Critical pressure estimated

(References 1 and 27)

from measured critical temperature.
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TABLE 4-XII

DENSITY OF LIQUID N204

(Under its Own Vapor Pressure)

Temperature
(°F)

11.8

32.0

50.0

68.0

77.0

95.0

104.0

I13.0

118.4

122.0

129.2

Specific Density
Gravity (lb/ft _ ) (lb/gal )

1.515 94.54 12.62

1.490 93.05 12.44

1.470 91.77 12.27

1.447 90.34 12.08

1.431 89.34 11.94

1.412 88.15 11.76

1.400 87.40 11.66

1.388 86.61 11.56

1.379 86.05 11.49

1.375 85.80 ii.45

1.363 85.05 I1.35

(References I and 27)
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TABLE 4-XIII

VISCOSITY OF N204 IN THE LIQUID PHASE

Temperature (°F)

40 70 100 130 160 190 220 250 280

Bubble Pressure (psi_)

14.8 30.7 60.0 111.2 196.4 332.8 543.9 864.1

Pressure (psla) Viscosity(centipoise)

Bubble Point 0.4990 0.4132 0.3420 0.2784 0.2235 0.1752 0.1325 0.0924 0.0570

200

400

600

800

I000

1250

1500

1750

2000

2200

2500

2750

3000

3500

4000

4500

5000

0.5021 0.4155 0.3441 0.2800 0.2250 0.1753

0.5055 0.4180 0.3470 0.2820 0.2281 0.1804 0.1350

0.5090 0.4208 0.3495 0.2840 0.2310 0.1850 0.1420 0.094d

0.5121 0.4232 0.3520 0.2861 0.2334 0.1896 0.1482 0.1028

0.5150 0.4260 0.3544 0.2880 0.2355 0.1939 0.1539 0.1100 0.0630

0.5190 0.4297 0.3.586 0.2906 0.2380 0.1975 0.1599 0.1179 0.0713

0.5230 0.4330 0.3587 0.2919 0.2400 0.2010 0.1646 0.1252 0.0798

0.5270 0.4366 0.3608 0.2949 0.2420 0.2040 0.1686 0.1319 0.0381

0.5310 0.4400 0.3628 0.2965 0.2440 0.2083 0.1720 0.1370 0.0940

0.5345 0.4433 0.3649 0.2990 0.2459 0.2060 0.1742 0.1400 0.0990

0.5382 0.4470 0.3070 0.3010 0.2480 0.2098 0.1764 0.1430 0.1045

0.5422 0.4502 0.3691 0.3024 0.2496 0.2110 0.1785 0.1444 0.1(390

0.5465 0.4535 0.3713 0.3042 0.2510 0.2127 0.1S00 0.1470 0.1120

0.4593 0.3753 0.2070 0.2540 0.2151 0.1822 0.1510 0.1170

0.4655 0.3792 0.3095 0.2568 0.2183 0.1_50 0.1532 0.1210

0.4714 0.3830 0.3118 0.2600 0.2200 0.1880 0.1555 0.1249

0.4782 0.3869 0.3145 0.2625 0.2229 0.1900 0.1579 0.1280
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TABLE 4-XIV

HEAT CAPACITY OF LIQUID N204

Temperature

2O.5

27.0

36.1

45.6

56.8

64.8

Heat Capacity

(BTU/Lb.-°F.)

o .3564

o .3578

o .3598

o .3624

o .3652

o .3667

(Reference 14)
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TABLE 4-XV

SOLUBILITY OF NITROGENAND HELIUM
IN LIQUID N204

Pressurizing Temperature Solubility
Gas (°F) (Wt. %)

Final Gas Pressure

(psia)

Nitrogen 70 o.20±o.01

32 o.i4 o.oi

Helium 73 0.04+0.01

32 0.02+_0.01

(Reference 8)
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TABLE 4-XVI

COMPATIBILITY OF CONSTRUCTION MATERIALS

WITH 50/50 FUEL BLEND

Material
Temp. Exposure

(°F.) Time Remarks

Birch Wood 75

Concrete

Bare 75

Coated w/water glass 75

Coated w/water glass 75
and floor enamel

(Esco Brand 41138)

Coated w/water glass 75
and Chex-Wear floor

enamel

Coated with Rockflux 75

Mild Steel Coated With

Tygon K Paint 75

Catalac improved 75

paint

Co-polymer P-2OOG 75

Sauerelsen 4Z 75

(4 coatings)

CA 9747 Primer Paint 75

Corrosite Clear 581 75

2 hr 30 min

13 hr

1 hr 30 min

i hr 15 min

6 min

l0 hr 30 min

1 hr

1 hr 30 min

3 min

7 hr

i0 min

1 hr 15 min

Wood grain split

No visual effect

Water glass crystallized
and powdered off

Paint blistered

Paint blistered

No visual effect

Paint blistered

Grainy appearance;

lifted when totally
immersed

Paint was removed

First coating was

removed in 1 hr;
blistered but did

not penetrate 4

coatings.

Blistered and dis-

colored

B]istered
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TABLE 4-XVII

COMPATIBILITY OF CONSTRUCTIONMATERIALS WITH N204

Material
Temp. Exposure
(°F.) Time Remarks

Birch Wood 75

Concrete

Bare 75

Coated w/water glass 75

Coated w/water glass

and floor enamel

(Esco Brand 41138)

Coated w/water glass

and Chex-Wear floor

enamel

Coated w/Rockflux 75

Mild Steel Coated with

Tygon K paint 75

Catalac, improved 75

Copolymer P-2OOG 75

Sauereisen 47 75

(4 coatings)

CA9747 Primer Paint 75

Corrosite Clear 581 75

30 min

I hr 42 min

i hr

75 30 min

75 3 min

I hr 15 rain

20 min

I0 min

2 min

I0 min

2 min

30 mln

Surface darkened;

a_tacked at H20-N204
interface

Concrete attacked

No apparent reaction;

affords protection

Reaction at HsO-Nm04
interface after 6

minutes; stripped to

water glass.

Only paint removed

Ns04 absorbed;
adhesion weakened;

material turned

white.

Paint blistered

Paint blistered;

lifted when totally

immersed

Dissolved immediately

Dissolved

Reaction and dis-

colored immediately

Blistered
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I. Figures

Fi$ure 4-I

MELTING POINT OF AEROZINE-50
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Figure 4-2

VAPOR PRESSURE OF AEROZINE-50
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Figure 4-3

SPECIFIC GRAVITY OF AEROZINE-50
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Figure 4-4

DENSITY OF AEEOZINE-50

58

57

5_

19
4_

,q_
55

!

,,-I

54

53-

P

0
0

I I I I I I I I
20 40 60 80 I00 120 140 I00

Temperature- °F.

(Reference i)

XI-33



2.00 -

Figure 4-5

VISCOSITY OF AEROZINE-50
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Figure 4-6

HEAT CAPACITY OF AEROZINE-50
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Figure 4-7
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VAPOR PRESSURE OF N204
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Figure 4-11

SPECIFIC GRAVITY OF N204 UNDER ITS OWN VAPOR PRESSURE
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Figure _-12

EFFECTS OF T_PERATURE ON VISCOSITY

IN THE LIQUID PHASE, N204

_05
0

.r4
4_

G)

o0.4.
!

4_

0
0.3

ID
4_

_ 0.2
r---I "

0

0.1

0
0

2000 psla5000 psia

Bubble Point

Curve

! I
5O ioo

| ! !
150 2O0 250.

Temperature - °F.

!
300

Xl-41



v

0.6 -

Fisure 4-13
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K. Appendix

FINAL REPORT

Search of Technical Literature

TO: G.C. Mattson

FROM: Lewis F. Hatch

The following abstract journals were searched for the ten-year period

1955-1964: Chemical Abstracts, Zentralblatt. All of the pertinent abstracts

found in the German abstract journal were also in Chemical Abstracts. The

topics covered were hydrazine, unsyn_netrical dimethyl-hydrazine and nitrogen

tetroxide. The subheadings were physical properties and spectra, chemical

properties, decomposition and decomposition products and analysis for the

parent compounds and their decomposition products. Additional keywords were

air pollution, atmospheric pollution, rockets, fuels and propellants.

The following government publications were not searched because they

were not available and because they are abstracted by Chemical Abstracts:

Governmentwide Index, International Aerospace Abstracts, Scientific and

Technical Aerospace Reports, Technical Abstract Bulletin, U° S. Government

Research Reports. The Rice University Library was searched for information

which might have been absent from The University of Texas Library. None

was found.

Xerox copies were made of about thirty (30) of the most interesting

abstracts and of about ten (i0) of the most interesting articles. These

copies were sent to Jerry LaCoume to make the information available within

the shortest possible time. We have brief abstracts of all the abstracts

which are listed in this report. They can be made available if desired.

The literature gave no evidence of reaction between eith_ hydrazine,

UDMH, or nitrogen tetroxide and fluoro-compounds of the Freo6_Jtype.
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Figure 2-13

REMOVAL OF AEROZINE-50 FROM STILLMAN SR634-70 RUBBER

USING ISOBUTANOL VAPORS AT 100°C.
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Figure 2-14
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IX. UNIT 3 - METHODS RESEARCH

A. Summary

le Results obtained clea_y show that the rate of desorption of

N204 fromthe Teflon_and of Aerozine-50 from Stillman SR634-70

rubber is dependent on temperature and independent of the kind
of the solvent used.

. Cleaning of the fuel and oxidizer systems may be accomplished

by heating to temperatures In the range, 80 to 105 ° C, for a

period of I to 3 hours, plus some form of purging. At ambient

temperature, I to 5 days would be required.

3. Vapor-phase cleaning is feasible with a number of solvents,

preferably those boiling in the range, 45 ° to 105 ° C.

4. Vapor-phase cleaning has advantages over liquid fill-and-drain

procedures as follows:

a. Latent heat of vaporization of solvent available to heat

the system uniformly throughout.

b. Flowing film of condensed solvent vapor is effective in

removing solid as well as liquid contaminants.

c. All surfaces within the system are bathed by the flowing
condensate film.

de Solvent required is reduced by a factor varying from

I/i00 to I/i000 of the amount required for fill-and-

drain flushing.

o From a purely technical standpoint, the best vapor-phase
decontaminating solvent is Freog_E-2, a development stage

compound material produced by E. I. du Pont. It is compatible

with all components of both systems.

6. Other solvents that may be suitable for use in vapor-phase
decontamination are:

a. Inhibited carbon tetrachloride - oxidizer system

b. Isopropanol - fuel system

c. Methanol - fuel system

The objectfves of this work unit include a search for unique

and improved methods of decontaminating the propulsion system;

a comparison of liquid-phase flushing with a vapor-phase process,

and a study of the effect of temperature on the rate of removal

of the oxidizer, the fuel, and selected solvents.
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B, Experimental and Results

Specimens cut from Teflo_TFE and Teflo_FEP were weighed

_nd placed in test chambers. Liquid N204 was added to the test

chambers. The samples were submerged in the Np04 for a period

ranging between 16 and 20 hours. The N204 was-drained off, the

chambers purged with gaseous nitrogen (GN2) for I0 minutes, the

specimens were removed, the weight gain was determined, and the

specimens were returned to the test chambers. The specimens were

decontaminated by the following procedures:

The first of these procedures was flushing with the solvent

under test at ambient temperature. Each specimen was flushed

a given number of times and allowed to drain. The specimen
was removed from the chamber and the weight loss determined.

At 24.5° C the_effectiveness of water, CC14, and Freo_ll as

liquids, Freo_ ]_ i_ as vapor, and gaseous nitrogen in removing

N204 from Teflons _ was determined and compared with the rate

N204 degasses from a contaminated specimen in a desiccator.

These data are plotted in Figure 3-3. The curves in the figure

show the rate of removal of N^0s from the specimens is roughly

the same for all of the solvents under test. It requires about

400 minutes to remove one-half of the N204 from the system. The

rate of desorption decreases as the concentration of N204 decreases

so the remaining N204 desorbs more slowly.

As the N204 was desorbing from the test specimens, absorption

of the cleansing solvent caused discrepancies in the data. Tests

were made to determine the rate of absorption of CCI 4 by Teflod4_

TFE specimens submerged in the liquid at 24.5 ° C. The results

are plotted in Figure 3-1.

The rate of solvent absorption by Teflon_TFE specimen suspended

in the saturated vapor of the boil_ng solvents was determined

for CCI 4 (b.p. = 81 ° C) and Freor_ll2 (b.p. = 93 ° C). The
results are shown by the curves in Figure 3-2. The effect of

temperature is shown by comparing the absorption of CCI 4 for
400 minutes at 24.5 ° C and 81 ° C. The results show at 24.5 ° C

approximately 0.06 mg/cm 2 of CCI 4 were absorbed compared to

0.70 mg/cm 2 at 81 ° C.

The effect of elevated temperature on the rate of desorpti_n of

the contaminants, N204 and A-50, was investigated. Teflon _

specimens contaminated with N204 or Stillman SR634-70 rubber

specimens contaminated with A-50 were suspended in the saturated

vapor of the candidate solvent. The rate the respective contami-

nated specimen lost weight and the uncontaminated specimen

gained weight was determined at timed intervals.
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To correct for solvent absorption, the above contaminated
specimenswere each paired with uncontaminated or "blank" specimens.
Five such pairs were usually placed in the saturated vapor of the
candidate solvent. This work was done in ordinary refluxing
apparatus. At timed intervals pairs were withdrawn from the
vapor and weighed. The weight gain of the blank specimen of a
given pair was assumedto indicate the amount of solvent the
contaminated specimen had absorbed so this weight was deducted

from the gross weight of the contaminated specimen to give a

measure of the net contaminant remaining in the specimen. The

assumption that equal amounts of solvent would be absorbed in

both members of the specimen pairs proved to be in error in some

instances. The curves in Figures 3-4, 3-5, and 3-6 show the

contaminated Stillman rubber specimens absorbed more of some

solvents than the uncontaminated or blank specimens.

Figure 3-3 shows the effect of increasing the temperature of

CCI 4 from 24.5 ° C to 81 ° C on the rate of desorption. Weight

change data corrected as described above is plotted against

time. At 24.5 ° C in 200 minutes, a Teflo_TFE specimen had

lost 36.2% of its N204 content. In the same time interval at

81 ° C, an identical specimen had lost 91.7% of its N204 content.

This figure also shows the desorption of N204 from Teflon_TFE

at 93° C--the boiling point of Freo_ I12. ExtrapolAtion of this

curve indicates that the N204 content in the Teflon-_ would

drop to zero in roughly 200 minutes.

The absorbed solvent is considered to be a contaminant as well

as the oxidant or the fuel, though less objectionable in some

instances. Therefore, attention was given to the possibility

that heated nitrogen might drive out the solvent remaining in

the nonmetallic parts after the solvent had driven out the

contaminant.

The results of desorption of A-50 from Stillman SR634-70 are

shown by the curves in Figure 3-5. Inspection of the curves shows

that desorption of the A-50 is obscured by the absorption of water.

One pair of specimens was placed in a 50 ° C nitrogen stream without

any steam treatment. Desorption of the A-50 from the contaminated

specimen based on weight change of this pair at 50 ° C was plotted

against time. It is shown by the lower of the curves originating

at the 8.0 milligram per square centimeter ordinate value. Five

other pairs of specimens were placed in the saturated steam in

the refluxing column and were withdrawn at timed intervals. The

specimens were weighed, then placed in the 50 ° C nitrogen stream.

The weight loss in the 50° C nitrogen stream is shown as the curves

branching from the "A-50 reflux desorption" curve. Similar data

was plot_d for methanol (Figure 3-6), isopropanol (Figure 3-7),

and Freor_E-2 (Figures 3-9, 3-10, and 3-11).

The curves show the desorption of absorbed materials from the

Stillman rubber in the 50° C nitrogen stream is very slow whether

it be water, or A-50, or a mixture.
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The initial concentration of A-50 in Stillman rubber affects the
desorption rate. The curves in Figure 3-5 are plots of weight
change of Stillman rubber in which the initial concentration of
A-50 was 5.0 mg/cm2 in one specimen and 8.0 mg/cm2 in the other.
The rapid weight loss of the specimen starting with 5.0 mg/cm2
was rapid whereas the specimen with 8.0 mg/cm_ showedan increase
in weight.

The curves in Figure 3-7 show the results of work with isopropanol
in removing A-50 from Stillman rubber. Inspection of the curves
shows the A-50 is rapidly expelled if the weight change correction
is applied. The Stillman rubber absorbed more isopropanol than was
experienced with methanol, steam, and several other solvents.

Figure 3-8 is a plot of data obtained with perfluorodimethylcyclobutane.
The rate of desorption of A-50 from Stillman rubber based on weight
changemeasurementsis slow, because of the low boiling temperature of
this solvent, 45° C. One-half of the A-50 had been desorbed in
about 1,300 minutes, which is about the samedesorption rate of
A-50 in 50° C, GN2.

Oneof the more important aspects of this work is the discovery
that absorption of perfluorodimethylcyclobutane into the Stillman
rubber is very slight--less than 0.i milligram per square centimeter
in 24 hours at 45° C. This solvent was disqualified for use in fuel
system decontamination because of the formation of a solid reaction
product which appeared as a scumon the wall of the flask.

Figure 3-9 shows a plot _data obtained with a second fluorinated
compound,du Pont's Freo_E-2 (b.p. = I01° C), a fluorinated ether.
Contaminated t_est specimen suspended in the saturated vapor of
boiling Freo_:E-2 desorbed the A-50 in 5 to 6 hours with negligible
absorption of this solvent in the specimens. This solvent appears
to be ideal for use in decontamination of the fuel system. It is
extremely inert and has no detrimental effects on the physical
properties of Stillman rubber.

Figures 3-10 and 3_i showplots of data obtained in tests on
specimens of Teflo_TFE and FE_f respectively, desorbing N204
in the saturated vapor of Freon_-VE-2. The desorption proceeds
rapidly. TFE is completely free of N204 in 50 _inutes. FEP
require_ 5 to 7 hours. Adsorption of the Freon_E-2 into the
Teflong_was appreciable.

Tables 3-1 and 3-11 summarizeresults plotted in Figures 3-1
through 3-11 and give additional information relative to the
solvents tested.

C. Discussion

The general approach was based on the premise that most of the

difficulties in the decontamination procedures are due to pro-

pellants absorbed into semiporous elastomers and plastic materials

in the systems. Work in the unit was entirely concerned with studies

to determine the most effective way to decontaminate these non-

metallic materials with the least possible detrimental effect on

them or on the metallic parts.
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Also, total decontamination of the nonmetallic parts was considered
to be a proper goal even though not completely attainable. That is,
not only were the respective propellant components to be removed
but also the cleansing solvent so that the part would be free of
any foreign substance.

It was at first expected that liquid-or vapor-flushing at ambient
temperature would probably suffice for decontamination. The problem
was thought to be merely that of determining which solvent was the
most effective in leaching out the respective propellant components.

It is considered difficult to heat the propulsion system to the
desired temperature range by f!_ing heated gas through the system.
The sensible heat available by this meanswould not be sufficient
to maintain the desired temperature because of radiation, conduction,
and convection losses.

By vaporizing a fluid and flowing the vapor through the system, the
latent heat of vaporization is available to allow uniform heating
throughout the system. The vapor would condense on all surfaces
colder than the boiling point of the solvent. These surfaces would
he bathed in a flowing film of the condensing vapor while at the
sametime being heated. Heating by this meanswould be rapid and
uniform. The uncondensedvapor flowing through the systems would
sweepout the gas phase of the contaminants. The amount of solvent
required for vapor-phase flushing is less by a factor of between
I/I00 and I/I000 than would be required for a liquid flush procedure.
Vapor-phase flushing should be feasible for the decontamination of
both the fuel and the oxidizer systems.

The most effectiv_ decontaminating solvent for use in vapor-phase
flushing is Freo_]_PE-2. However, this solvent is in the developmental
stage. Vapor-phase flushing would require about 1,000 pounds for the
Apollo propulsion system.

Freo_E-2 would be suitable for _econtaminating both systems. It
is interesting to note that Freo_E-2 has a molecular weight of
452; it has only one hydrogen atom and two oxygen atoms; otherwise,
it is a totally fluorinated ether. There are not manycompounds
that meet all requirements, but other co_ounds that might be
expected to have merits similar to Freon_E-2 as a decontaminant
would have these properties:

I. Inertness to N204 and A-50.

2. Molecular weight in the range of 300 and up for low absorption.

3. Low freezing point, -i0 ° C or lower.

4. Boiling point in the range, 80-101° C. This, with a large
molecular weight, would also require a highly fluorinated
compound.

Other solvents that may be suitable for decontamination are inhibited
CC14, in the oxidizer system, and isopropanol, normal propanol, or
methanol, in the fuel system. The Stillman rubber absorbs significant
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amounts of these materials and holds them tenaciously. However,

it is believed that the presence of these compounds can be tolerated

to the extent that they would be present in the fuel system.

Water would be excellent and cheap for use in both systems, but there

are widespread objections to water because of the difficulties of

complete drying.
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X. ANALYTICAL PROCEDURES

A. Determination of Nitrogen Tetroxide in Aqueous Solution

i. scope

This method is applicable to the determination of nitrogen

tetroxide in the range of 20 ppm or more in aqueous solution.

2. Principle

In aqueous solution nitrogen tetroxide forms nitric and nitrous

acids which are titratable with standard sodium hydroxide.

3. Reagents

(a) Sodium hydroxide, standard 0.i _, 0.01 _ and 0.001 _ solutions.

Dilute 8 grams of clear 50% sodium hydroxide solution with

distilled water and make to one liter volume. Standardize

against 0.i _ hydrochloric acid which has been standardized

against primary standard sodium carbonate. Prepare the

0.01N and 0.001N Na0H by diluting the 0.i N solution with
carbonate-free distilled water.

(b) Phenolphthalein indicator - 0.1% in ethanol.

4. Interferences

Any acid or base present will represent an interference.

5. Procedure

Pipet into a flask a volume of sample such that it contains a

minimum of 250 micrograms of nitrogen tetroxide. Add two or three

drops of phenolphthalein indicator and titrate to the first faint

pink color that is stable for about 20 seconds. Use the most

appropriate strength solution of sodium hydroxide. Calculate ppm

nitrogen tetroxide.

6. Calculation

ml titrant _ normality titrant x 461000

ml sample x density sample = ppm nitrogen tetroxide

B. Determination of Nitrogen Tetroxide in Organic Solvents

This method may be used to determine nitrogen tetroxide in organic

solvents down to the 20 ppm level.
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2. Principle

Standard alcoholic potassium hydroxide is used to titrate N20 _
or its acidic decomposition products. The end point of the tltration

is determined potentiometrically.

3. Interferences

As this is a simple acid-base titration, other acids or bases

present will interfere.

. Apparatus

pH meter, Leeds and Northrup 7401, or equivalent, equipped with

glass and calomel electrodes.

5. Reagents

(a) Ethanol, 95 to 100%.

(b) Potassium hydroxide, standard 1N__ 0.01 _ and 0.001 _ solutions.

Dissolve 16.7 grams of low-carbonate potassium hydroxide in

ethanol and dilute to 250.0 ml. Standardize against primary standard

benzoic acid. Prepare solutions of 0.01 _ and 0.001 _ potassium

hydroxide by dilution with alcohol.

6. Procedure

(a) Set up the pH meter so that the solution to be titrated may be

continuously monitored. Provision for continuous stirring of

the sample is desirable.

(b) Place I0 ml of ethanol in a I00 ml tall-form beaker. Add 15.0 ml

of sample by pipette.

(c) Titrate with standard alcoholic potassium hydroxide. At

intervals record pH and volume of standard base. Near the

end point, add the potassium hydroxide in small increments

and wait for a constant reading of the pH meter.

(d)

(e)

From the plot of pH versus volume of standard potassium

hydroxide, determine the volume of standard solution required

for the titration and the pH at the end point. Use this

indicated pH as the end point in subsequent titrations.

Titrate a blank sample consisting of i0 ml alcohol and 15 ml of

organic solvent which is free of N204 contamination. Correct

the sample titration for this blank.

7. Calculation

'°v4_'N2n- = V x N x 4.6
15 ml xD

where, V = net milliliters of standard base

N = normality of standard base

D = density of organic solvent in grams/ml
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8. Notes

(a) Since the N204may react with the solvent, samples should
b.e titrated immediately upon receipt.

(b) Gas space in the samplebottle should be held to a minimum
to reduce loss of N204 to the vapor phase.

C. Determination of 111-Dimethylhydrazine in Aqueous Solution

i. scope

This method is suitable for the determination of 20 ppm or more

l,l-dimethylhydrazine in aqueous solution.

2. Principle

l,l-Dimethylhydrazine is titrated as a base using a strong acid

as a titrant. The end point is determined using a pH meter.

3. Interferences

Any acid or base will represent an interference.

4. Apparatus

(a) pH meter.

(b) Magnetic stirrer and stirring bars.

5. Reagents

.

Hydrochloric acid, standard 0.i _, 0.01 _, 0.001 _, and 0.0005
solutions. Dilute 8.5 ml of concentrated hydrochloric acid to one

liter with distilled water. Standardize against primary standard

sodium carbonate. Prepare the 0.01 _, 0.001 _, and 0.0005 _ solutions

by diluting the 0.I N solution with carbonate-free distilled water.

Procedure

Pipet into a beaker a volume of sample such that it contains a

minimum of about 500 micrograms of l,l-dimethylhydrazine. Place

a stirring bar in the beaker and set beaker on a magnetic stirrer.

Immerse electrodes in the solution and record initial pH. Add

small measured portions of the appropriate standard hydrochloric

acid and record pH and volume of titrant after each addition. Plot

the titration curve to locate the end point and calculate ppm

l,l-dimethylhydrazine.

7. Calculation

ml titrant x normality titrant x 60_000

ml sample x density sample = ppm l,l-dimethylhydrazine
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D, Determination of l,l-Dimethylhydrazine in Nonaqueous Media

1. Sco_ez_

This method is suitable for the determination of 20 ppm or more

of l,l-dimethylhydrazine in nonaqueous media.

2. Principle

l,l-Dimethylhydrazine is titrated in nonaqueous solution by

perchloric acid. The end point is determined by plotting the

apparent pH as a function of volume of standard perchloric acid
added.

3. Interferences

Any acid or base will represent an interference.

4. Apparatus

(a) pH meter.

(b) Magnetic stirrer and stirring bars.

5. Reagents

(a) Standard perchloric acid in ethanol, 0.I N, 0.01 N,

0.001 _, and 0.0005 _ solutions. Dilute 17.1 ml of 60%

perchloric acid to one liter with 2B ethanol. Standardize

against primary standard grade trishydroxymethylaminomethane

using the pH meter to locate the end point. This primary

standard is available from Fisher Scientific Company, Fair

Lawn, New Jersey. Prepare 0.01 N, 0.001N and 0.0005 N

perchloric acid by diluting the _.i N sol_tion with 2B--

ethanol which has been titrated to its end point with

perchloric acid in ethanol.

(b) Anhydrous 2B ethanol.

6. Procedure

Pipet into a beaker a volume of sample such that it contains a

minimum of about 400 micrograms of l,l-dimethylhydrazine. Add

at least an equal volume of 2B ethanol for the lower concentrations

and enough to make a total volume of about 50 ml for the higher

concentrations. Place a stirring bar in the beaker and set beaker

on a magnetic stirrer with the pH meter electrodes immersed in the

solution. Record the initial apparent pH. Add small measured

portions of the appropriate standard perchloric acid and record

apparent pH and volume of titrant after each addition. Plot the

titration curve and determine ml of titrant at the equivalence

point. Calculate ppm I,i dimethylhydrazine.
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o Calculation

ml titrant x normality titrant x 60_000 = ppm l,l-dimethylhydrazine

ml sample x density sample
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XI. TECHNOLOGY SURVEY

A. Introduction

This is a summary of a literature search for the specific technology

directly related to the decontamination or the removal of trace

amounts of the propellant, nitrogen tetroxide, and Aerozfne-50

from propulsion systems.

The topics covered were: propellants, nitrogen tetroxide, hydrazine,

and unsymmetrical dimethyl hydrazine. The subtopics were: analytical

procedures, decontamination methods, hazards and toxicity, hydrazine

reactions, hvdrazine and related compounds' use and preparation,

propellant systems storage and design, N204 physical properties and

reactions, and propellant compatibility.

The abstracting journals searched were: Chemical Abstracts (1955-65),

Governmentwide Index, Technical Abstracts Bulletin (1961-65), Applied

Science and Technology Index, En_ineerin_ Index, International Aero-

space Abstracts, Scientific and Technical Aerospace Reports , Business

Periodical Index, and Dow's Central Research Index.

The literature search,made under directions of Dr. Levis Hatch,

Professor at the University of Texas, is included as an addendum

to this technology survey.

B. Decontamination Methods

The strategic missile race demands a propulsion system having

instant readiness. These missiles use storable liquid propellants.

The oxidizers are N204 and white or red fuming nitric acid. The

fuels are hydrazine, unsymmetrical dimethyl hydrazine (UDMH),

monomethyl hydrazine (MM_), and Aerozine-50. The missiles of today

are large and complex in comparison with those of earlier times.

They are regularly test-fired, disassembled, inspected, and put

back in standby condition. A part of this program is the decontami-

nation of the propulsion system prior to disassembly. This requires

more than passing care because the fuel and the oxidant components

are highly toxic and corrosive. Both penetrate into the pores of

the elastomers and the plastic materials in the propulsion system

and are difficult to remove. The oxidizers form explosive mixtures

with a number of solvents not normally thought of as explosive,

and the fuels form explosive mixtures with air and with other

oxidizing materials. Reactions between the two components and

the cleansing compounds, including water, have produced undesirable

solids within the systems at times. In order to maintain reliability

of operation, cleanliness requirements have become more and more

stringent as the complexity and size of the rockets have increased. (II)

A discussion of some of the cleaning methods attempted and in use today
follows.

Io Decontamination by Heated GN 2 Purge

N204 Removal: Of the various storable propellants, N204 is

most effectively removed by this method. However, as the

N204 is volatilized, the slight amount of water present as
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in impurity in the N20A lags behind and concentrates. Enough
moisture can remain to-form a 70%nitric acid azeotrope. This
highly corrosive liquid aeeumulates in small crevices and cannot
be removed in a reasonable time period.

A-50 Removal: Because of the higher boiling points and
greater moisture content of the various fuels and blends,
decontamination of the fuel system is not feasible by heated
GN2 purge.(II)

2. Vacuum DryinE

The first objection is that few systems can tolerate a vacuum.

Furthermore, N204 and A-50 have relatively high freezing tempera-
tures: 12 ° and 18° F, respectively. Application of a vacuum

causes freezing. If precautions are taken in application of

vacuum to prevent freezing, moisture present as an impurity

remains to form corrosive acidic or basic concentrates.

3. Steam Cleanin_

This method has been tried in a number of instances. Although

it offered several advantages, it was not considered to be

wholly successful. Advantages are: a heating source to volatilize

the contaminants, a purge gas to sweep the same out of the system,

and a flowing liquid film flush. Disadvantages are: the formation

of corrosive acidic and basic products not removable at low pressure

steam temperature, and the detrimental effect of temperature in

the range 212 ° to 250 ° F on nonmetallic parts.

4. Volatile Neutralization

Decontamination by use of volatile materials such as NH 3 and

C02 were considered. However, the neutralization products are

solids. In general, it was concluded that the interior of the

propellant systems is no place to allow a chemical reaction

producing solids to occur.

5. Serial Dilution

This method is a sequential filling and draining with the same

water. It was found to be adequate for removing propellants to

levels that are safe for experienced personnel to perform dis-

assembly out of doors but was considered unsafe for indoor

disassembly.

6. Use of Neutralizin_ Solutions

This decontamination procedure was studied by investigators at

Aerojet-General Corporation for cleaning of Titan II engines.

A neutralization concentrate was prepared for the oxidant and

the fuel. The oxidant flushing concentrate included triethanola-

mine as the neutralizer, a freezing point depressant, deionized

water, a wetting agent, and an antifoam agent. The fuel cleaning

concentrate used as a similar formulation, but hydroxyacetic acid

was substituted for triethanolamine. Also, a corrosion inhibitor
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was added. The concentrates were diluted with ten parts of water

and flushed through the respective systems, followed by water.

The systems were dried with anhydrous methanol followed by hot

GN2.(II)

7. Tri-Flush Method

This is a slight modification of the procedure discussed above

except that a methylene chloride was added to the procedure.

The tri-flush method was an improvement over previously used

procedures but had disadvantages as follows:

a. Multi-flush procedure required storage and handling of

large quantities of the several flushing fluids.

b. Time-consuming.

c. Drying was not complete.

do

eo

Residual antifoaming agent polymerized with solvent materials

to form particulate solids.

Significant corrosion was apparent. (24)

8. Single-Flush Method

A new approach to decontamination was made by investigators at

McDonnel Aircraft Corporation for the Gemini program which uses

_n, _ monomethyl ......... as_,z_w _._ ,yuLaz_ne propeiiants, it was proposed

to use a volatile solvent in single-stage flushing of both sides
of the propulsion system. FreorM_MF was chosen as the flushing

fluid for the following reasons:

a. It is compatible with both components.

b. Freo_MF has low viscosity and good penetration power.

c. The solvent adds no water to the system and is easily dried. (24)

Present decontamination of the Apollo service module uses a
modification of the above system. Freor_ll was not found to

be sufficiently miscible with Aerozine-50, nor was it compatible

with the materials of construction used in the fuel system.

Methanol was adopted as the single flush fluid for the Aerozine
system, and Freon_MF was retained for the N204 system.(5)

9. Other Methods

Other methods were tried, many of which are not published.

An unexpected development was the discovery that trichloroethylene

could form an explosive mixture with N204. Such a mixture was

accidentally detonated and produced a violent explosion at

Rocketdyne in 1963. (23) This explosion plus dissatisfaction with
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the cleansing procedures in general, has led to renewed effort
in the search for a truly satisfactory cleaning procedure.

C. Propellant-Solvent Compatibility

In November 1963, a violent explosion resulting in the loss of

two lives occurred at the Rocketdyne Company during the decontami-

nation of an N204 propellant system. It is believed that an in-

advertant mixing of a trace of Aerozine-50 with N204 loaded tri-

chloroethylene detonated the solvent-oxidizer mixture. (4) Following

this event, interest in compatibility testing increased. The pro-

cedure most widely followed made use of standard blasting caps in

trials to determine whether a given solvent mixed in various propor-

tions with N204 would detonate. It was found that maximum sensitivity,
or the tendency to explode, was obtained by placing the cap below

the liquid level of a 50-50 mixture of the solvent being tested with

liquid N204. A number of solvents not previously thought to be
detonatable were found to be unsafe in mixtures with N204 .(4'41'16)

The presence of hydrogen in a solvent reduces its stability in

contact with N204; chloroform (CHCI 3) is on the borderline but is

not incompatible with N204 .(16) Completely halogengted compounds

such as Freon _ TF (Freo_ll3) and Freo_ MF (Freo_ll) and carbon

tetrachloride were found to be safe. (16)

D. Properties and Reactions of the Propellants

i. Aerozine-50

a. Properties and Reactions

Aerozine-50 is a 50/50 mixture of unsymmetrical dimethyl

hydrazine (UDMH) and hydrazine (N2H4). This blend is a clear,

colorless, hygroscopic liquid with a characteristic fishy

ammoniacal odor. The components of the mixture are miscible

in all proportions. On combination, there is an immediate

tendency for each to desolve in the other. But layering of

the mixture can occur, with UDMH above the N2H4, because of

the significant difference in density. (I) When first intro-

ducing UDM}I and N2H 4 in a vessel or upon rapid chilling, the
mixture will separate, forming an interface. Many ways of

mixing the components have been studied. However, once the

components have been satisfactorily blended, no appreciable
stratification is observed. (46)

Aerozine-50 is soluble in water, ammonia, and alcohols;

it is a strong reducing agent, and is also weakly alkaline.

It will react slowly with air and C02 to form several products

and salts. Rags, sawdust, and other materials with large

surface areas on prolonged exposure to the vapor, may absorb

enough A-50 to ignite spontaneously.
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